The impact of artificial intelligence in the diagnosis and management of glaucoma

Deep learning (DL) is a subset of artificial intelligence (AI), which uses multilayer neural networks modelled after the mammalian visual cortex capable of synthesizing images in ways that will transform the field of glaucoma. Autonomous DL algorithms are capable of maximizing information embedded in digital fundus photographs and ocular coherence tomographs to outperform ophthalmologists in disease detection. Other unsupervised algorithms such as principal component analysis (axis learning) and archetypal analysis (corner learning) facilitate visual field interpretation and show great promise to detect functional glaucoma progression and differentiate it from non-glaucomatous changes when compared with conventional software packages. Forecasting tools such as the Kalman filter may revolutionize glaucoma management by accounting for a host of factors to set target intraocular pressure goals that preserve vision. Activation maps generated from DL algorithms that process glaucoma data have the potential to efficiently direct our attention to critical data elements embedded in high throughput data and enhance our understanding of the glaucomatous process. It is hoped that AI will realize more accurate assessment of the copious data encountered in glaucoma management, improving our understanding of the disease, preserving vision, and serving to enhance the deep bonds that patients develop with their treating physicians. 深度学习 (Deep learning,DL) 是人工智能的一个分支, 通过模仿哺乳动物视皮层合成影像的能力, 建立多层神经网络模型。 这种技术会在青光眼领域起到变革的作用。自主DL算法能够最大化地收集眼底图像和OCT中包含的信息, 在疾病探查方面甚至能够超越眼科医生。其他的无监管算法例如主成分分析 (纵学习) 和原型分析 (角点学习) 有助于对视野结果进行解释, 并且与传统软件包相比能够更好地检测青光眼功能性进展, 并与非青光眼相鉴别。此外, 如卡尔曼滤波器等预测性工具可收录一系列影响因素后确定维持视力的目标眼压值, 从而彻底改变了青光眼的管理。DL算法通过处理青光眼数据可生成激活图, 引导我们关注高通量数据中嵌入的关键数据元素, 并加强我们对青光眼发展过程的理解。最后, 希望AI能够更加精准地评估青光眼治疗管理过程中的大量数据, 提高我们对青光眼、保护视力的认识, 成为患者与医生之间的深厚纽带。

[1]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  E. Finkelstein,et al.  Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes , 2017, JAMA.

[3]  Denise S. Kim,et al.  Differences in rates of glaucoma among Asian Americans and other racial groups, and among various Asian ethnic groups. , 2011, Ophthalmology.

[4]  Kenji Kashiwagi,et al.  Evaluation of deep convolutional neural networks for glaucoma detection , 2019, Japanese Journal of Ophthalmology.

[5]  D. Catlin Estimation, Control, and the Discrete Kalman Filter , 1988 .

[6]  Gian-Gabriel P. Garcia,et al.  Using Kalman Filtering to Forecast Disease Trajectory for Patients With Normal Tension Glaucoma. , 2019, American journal of ophthalmology.

[7]  M. Treder,et al.  Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning , 2018, Graefe's Archive for Clinical and Experimental Ophthalmology.

[8]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[9]  Fabio Anselmi,et al.  Visual Cortex and Deep Networks: Learning Invariant Representations , 2016 .

[10]  Tobias Elze,et al.  Patterns of functional vision loss in glaucoma determined with archetypal analysis , 2015, Journal of The Royal Society Interface.

[11]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[12]  Peter H Whincup,et al.  Ethnic differences in the prevalence of myopia and ocular biometry in 10- and 11-year-old children: the Child Heart and Health Study in England (CHASE). , 2010, Investigative ophthalmology & visual science.

[13]  S. Mansberger,et al.  Primary Open-Angle Glaucoma Preferred Practice Pattern(®) Guidelines. , 2016, Ophthalmology.

[14]  Xiaodong Wu,et al.  Catastrophic Failure in Image-Based Convolutional Neural Network Algorithms for Detecting Diabetic Retinopathy , 2017 .

[15]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[16]  I. Scott,et al.  Expert agreement in evaluating the optic disc for glaucoma. , 1992, Ophthalmology.

[17]  F. Viégas,et al.  Deep learning of aftershock patterns following large earthquakes , 2018, Nature.

[18]  Paolo Fogagnolo,et al.  Mapping standard automated perimetry to the peripapillary retinal nerve fiber layer in glaucoma. , 2008, Investigative ophthalmology & visual science.

[19]  Hiroshi Murata,et al.  Development of a deep residual learning algorithm to screen for glaucoma from fundus photography , 2018, Scientific Reports.

[20]  Andrew H. Beck,et al.  Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer , 2017, JAMA.

[21]  R S Harwerth,et al.  Ganglion cell losses underlying visual field defects from experimental glaucoma. , 1999, Investigative ophthalmology & visual science.

[22]  Aaron Y. Lee,et al.  Artificial intelligence and deep learning in ophthalmology , 2018, British Journal of Ophthalmology.

[23]  Zhang Yi,et al.  Automated retinopathy of prematurity screening using deep neural networks , 2018, EBioMedicine.

[24]  Ryo Asaoka,et al.  Discriminating between Glaucoma and Normal Eyes Using Optical Coherence Tomography and the ‘Random Forests’ Classifier , 2014, PloS one.

[25]  G. Rubin,et al.  Causes of blindness and visual impairment in a population of older Americans: The Salisbury Eye Evaluation Study. , 2000, Archives of ophthalmology.

[26]  William Speier,et al.  Classifying Acute Ischemic Stroke Onset Time using Deep Imaging Features , 2017, AMIA.

[27]  Stratis Ioannidis,et al.  Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity , 2018, British Journal of Ophthalmology.

[28]  Geraint Rees,et al.  Clinically applicable deep learning for diagnosis and referral in retinal disease , 2018, Nature Medicine.

[29]  M. Abràmoff,et al.  Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. , 2016, Investigative ophthalmology & visual science.

[30]  Fei Li,et al.  Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network , 2018, BMC Medical Imaging.

[31]  Peter J. Bex,et al.  An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis , 2019, Investigative ophthalmology & visual science.

[32]  H. Tabuchi,et al.  Deep-learning Classifier With an Ultrawide-field Scanning Laser Ophthalmoscope Detects Glaucoma Visual Field Severity , 2018, Journal of glaucoma.

[33]  Christopher Bowd,et al.  Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs , 2018, Scientific Reports.

[34]  H. Quigley,et al.  The size and shape of the optic disc in normal human eyes. , 1990, Archives of ophthalmology.

[35]  Rishab Gargeya,et al.  Automated Identification of Diabetic Retinopathy Using Deep Learning. , 2017, Ophthalmology.

[36]  M. He,et al.  Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. , 2018, Ophthalmology.

[37]  Lucy Q. Shen,et al.  Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms. , 2019, Ophthalmology.

[38]  E. J. Lefferts,et al.  Kalman Filtering for Spacecraft Attitude Estimation , 1982 .

[39]  Tushar Sircar,et al.  GearVision: Smartphone Based Head Mounted Perimeter For Detection Of Visual Field Defects , 2018, 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[40]  Jonathan E. Helm,et al.  Using filtered forecasting techniques to determine personalized monitoring schedules for patients with open-angle glaucoma. , 2014, Ophthalmology.

[41]  T. Wong,et al.  Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. , 2014, Ophthalmology.

[42]  Pooyan Kazemian,et al.  Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods. , 2017, Ophthalmology.

[43]  H. Aerts,et al.  Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR , 2017, Scientific Reports.

[44]  Neil J. Joshi,et al.  Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks , 2017, JAMA ophthalmology.

[45]  P. Lichter,et al.  Fear of blindness in the Collaborative Initial Glaucoma Treatment Study: patterns and correlates over time. , 2007, Ophthalmology.

[46]  Felipe A. Medeiros,et al.  From Machine to Machine: An OCT-trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs , 2018, Ophthalmology.

[47]  M W Kattan,et al.  Determining the Area under the ROC Curve for a Binary Diagnostic Test , 2000, Medical decision making : an international journal of the Society for Medical Decision Making.

[48]  Tobias Elze,et al.  Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma. , 2018, Ophthalmology.

[49]  Subhashini Venugopalan,et al.  Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. , 2016, JAMA.

[50]  Earl L. Smith,et al.  Neural losses correlated with visual losses in clinical perimetry. , 2004, Investigative ophthalmology & visual science.

[51]  Hiroshi Murata,et al.  Validating the Usefulness of the "Random Forests" Classifier to Diagnose Early Glaucoma With Optical Coherence Tomography. , 2017, American journal of ophthalmology.

[52]  Eric J Topol,et al.  High-performance medicine: the convergence of human and artificial intelligence , 2019, Nature Medicine.

[53]  M H Goldbaum,et al.  Interpretation of automated perimetry for glaucoma by neural network. , 1994, Investigative ophthalmology & visual science.

[54]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[55]  P. Foster,et al.  Epidemiology of myopia , 2014, Eye.

[56]  Donald E. Catlin,et al.  The Discrete Kalman Filter , 1989 .

[57]  B. Cvenkel,et al.  Self-monitoring of intraocular pressure using Icare HOME tonometry in clinical practice , 2019, Clinical ophthalmology.

[58]  Sebastian Thrun,et al.  Dermatologist-level classification of skin cancer with deep neural networks , 2017, Nature.

[59]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[60]  Thomas Blaschke,et al.  The rise of deep learning in drug discovery. , 2018, Drug discovery today.

[61]  P. H. Lindsay,et al.  Human Information Processing: An Introduction to Psychology , 1972 .

[62]  Hiroshi Murata,et al.  Using Deep Learning and Transfer Learning to Accurately Diagnose Early-Onset Glaucoma From Macular Optical Coherence Tomography Images. , 2019, American journal of ophthalmology.

[63]  F. Medeiros,et al.  A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs. , 2019, American journal of ophthalmology.

[64]  Lucy Q. Shen,et al.  Clinical Correlates of Computationally Derived Visual Field Defect Archetypes in Patients from a Glaucoma Clinic , 2017, Current eye research.

[65]  Chrishan D Gunasekera,et al.  High-Resolution Direct Ophthalmoscopy With an Unmodified iPhone X , 2019, JAMA ophthalmology.

[66]  J. Crowston,et al.  Optic disk size and glaucoma. , 2007, Survey of ophthalmology.

[67]  Hiroshi Murata,et al.  Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier. , 2016, Ophthalmology.

[68]  L. Peng,et al.  Deep learning in ophthalmology: The technical and clinical considerations , 2019, Progress in Retinal and Eye Research.

[69]  Jong Hyo Kim,et al.  Screening Glaucoma With Red-free Fundus Photography Using Deep Learning Classifier and Polar Transformation , 2019, Journal of glaucoma.

[70]  C. Kee,et al.  Population-based glaucoma prevalence studies in Asians. , 2014, Survey of ophthalmology.

[71]  Chris A Johnson,et al.  Classification of visual field abnormalities in the ocular hypertension treatment study. , 2000, Archives of ophthalmology.

[72]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[73]  Bianca S. Gerendas,et al.  Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. , 2017, Ophthalmology.