Controlled assembly of plasmonic colloidal nanoparticle clusters.

Coupling of localized surface plasmon resonances results in singular effects at the void space between noble metal nanoparticles. However, implementation of practical applications based on plasmon coupling calls for the high yield production of metal nanoparticle clusters (dimers, trimers, tetramers, …) with small gaps. Therefore, controlled assembly using colloid chemistry methods is an emerging and promising field. We present a brief overview over the controlled assembly of plasmonic nanoparticle clusters by colloid chemistry methods, together with a description of their plasmonic properties and some applications, with an emphasis in sensing through surface-enhanced Raman scattering spectroscopy for bio-detection purposes. We point out the important role of separation methods to obtain colloidal clusters in high yield. A special encouragement to explore assembly of anisotropic building blocks is pursued.

[1]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[2]  Javier Aizpurua,et al.  Mapping the plasmon resonances of metallic nanoantennas. , 2008, Nano letters.

[3]  Hilmar Koerner,et al.  Depletion-induced shape and size selection of gold nanoparticles. , 2010, Nano letters.

[4]  Peidong Yang,et al.  Polyhedral silver nanocrystals with distinct scattering signatures. , 2006, Angewandte Chemie.

[5]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[6]  Hongxing Xu,et al.  Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering , 2001 .

[7]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[8]  Tuan Vo-Dinh,et al.  Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization. , 2008, The journal of physical chemistry. C, Nanomaterials and interfaces.

[9]  Weiyang Li,et al.  Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. , 2009, Nano letters.

[10]  M. Arnold,et al.  Transmitting hertzian optical nanoantenna with free-electron feed. , 2010, Nano letters.

[11]  P. Pramod,et al.  Plasmon Coupling in Dimers of Au Nanorods , 2008 .

[12]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[13]  J. M. Baik,et al.  Polarized surface-enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires. , 2009, Nano letters.

[14]  N. Jana Nanorod shape separation using surfactant assisted self-assembly. , 2003, Chemical communications.

[15]  A. Koenderink Plasmon nanoparticle array waveguides for single photon and single plasmon sources. , 2009, Nano letters.

[16]  Paul Mulvaney,et al.  Plasmon coupling of gold nanorods at short distances and in different geometries. , 2009, Nano letters.

[17]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[18]  L. Manna,et al.  Tips on growing nanocrystals , 2005, Nature materials.

[19]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[20]  Christine M. Micheel,et al.  Electrophoretic and Structural Studies of DNA-Directed Au Nanoparticle Groupings , 2002 .

[21]  T. Odom,et al.  Pyramids: a platform for designing multifunctional plasmonic particles. , 2008, Accounts of chemical research.

[22]  K. Murakoshi,et al.  Toward Plasmon-Induced Photoexcitation of Molecules , 2010 .

[23]  Hongyu Chen,et al.  Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. , 2010, Journal of the American Chemical Society.

[24]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[25]  R. J. Brown,et al.  Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions. , 2004, The Journal of chemical physics.

[26]  George C Schatz,et al.  Optical properties of nanowire dimers with a spatially nonlocal dielectric function. , 2010, Nano letters.

[27]  C. Zhong,et al.  Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures. , 2009, Accounts of chemical research.

[28]  M. Grzelczak,et al.  Optical properties of platinum-coated gold nanorods , 2007 .

[29]  C. Noguez Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment , 2007 .

[30]  Catherine J. Murphy,et al.  Wet chemical synthesis of silver nanorods and nanowiresof controllable aspect ratio , 2001 .

[31]  Vinothan N Manoharan,et al.  Dense Packing and Symmetry in Small Clusters of Microspheres , 2003, Science.

[32]  George C Schatz,et al.  Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. , 2010, Journal of the American Chemical Society.

[33]  Chad A Mirkin,et al.  DNA-induced size-selective separation of mixtures of gold nanoparticles. , 2006, Journal of the American Chemical Society.

[34]  Michael Bauer,et al.  Adaptive subwavelength control of nano-optical fields , 2007, Nature.

[35]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[36]  Chad A. Mirkin,et al.  Designing, fabricating, and imaging Raman hot spots , 2006, Proceedings of the National Academy of Sciences.

[37]  F. J. García de abajo,et al.  Robust plasmon waveguides in strongly interacting nanowire arrays. , 2008, Nano letters.

[38]  P. Jain,et al.  Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. , 2010, Nano letters.

[39]  E. Zubarev,et al.  Purification of high aspect ratio gold nanorods: complete removal of platelets. , 2008, Journal of the American Chemical Society.

[40]  L. Liz‐Marzán,et al.  Magnetic-noble metal nanocomposites with morphology-dependent optical response , 2007 .

[41]  L. Liz‐Marzán,et al.  SERS-based diagnosis and biodetection. , 2010, Small.

[42]  L. Liz‐Marzán,et al.  N,N‐Dimethylformamide as a Reaction Medium for Metal Nanoparticle Synthesis , 2009, Colloidal Synthesis of Plasmonic Nanometals.

[43]  J. Shumaker-Parry,et al.  Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach. , 2007, Journal of the American Chemical Society.

[44]  Paul Mulvaney,et al.  Steric exclusion chromatography of nanometer-sized gold particles , 1993 .

[45]  Younan Xia,et al.  The effects of size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells. , 2010, Small.

[46]  Daeha Seo,et al.  Directed surface overgrowth and morphology control of polyhedral gold nanocrystals. , 2008, Angewandte Chemie.

[47]  M. Moskovits Spectroscopy: Expanding versatility , 2010, Nature.

[48]  A Paul Alivisatos,et al.  Discrete nanostructures of quantum dots/Au with DNA. , 2004, Journal of the American Chemical Society.

[49]  Stella M. Marinakos,et al.  Assembly of Phenylacetylene‐Bridged Gold Nanocluster Dimers and Trimers , 1999 .

[50]  Christine H. Moran,et al.  Understanding the SERS Effects of Single Silver Nanoparticles and Their Dimers, One at a Time. , 2010, The journal of physical chemistry letters.

[51]  Prashant K. Jain,et al.  Plasmonic coupling in noble metal nanostructures , 2010 .

[52]  J. Fraser Stoddart,et al.  Assembly of polygonal nanoparticle clusters directed by reversible noncovalent bonding interactions. , 2009, Nano letters.

[53]  J. R. Adleman,et al.  Heterogenous catalysis mediated by plasmon heating. , 2009, Nano letters.

[54]  Federico Capasso,et al.  Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. , 2010, Nano letters.

[55]  A Paul Alivisatos,et al.  Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes , 2006, Proceedings of the National Academy of Sciences.

[56]  Christine M. Micheel,et al.  Electrophoretic Isolation of Discrete Au Nanocrystal/DNA Conjugates , 2001 .

[57]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[58]  L. Liz‐Marzán,et al.  Colloidal silver nanoplates. State of the art and future challenges , 2008 .

[59]  Romain Quidant,et al.  Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.

[60]  L. Liz‐Marzán,et al.  Chemical sharpening of gold nanorods: the rod-to-octahedron transition. , 2007, Angewandte Chemie.

[61]  Yong Wang,et al.  Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints. , 2010, ACS nano.

[62]  Rapid separation and purification of nanoparticles in organic density gradients. , 2010, Journal of the American Chemical Society.

[63]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[64]  Carsten Sönnichsen,et al.  Separation of nanoparticles by gel electrophoresis according to size and shape. , 2007, Nano letters.

[65]  M. Ratner,et al.  Chemical fabrication of heterometallic nanogaps for molecular transport junctions. , 2009, Nano letters.

[66]  Albert Polman,et al.  Plasmon-based nanolenses assembled on a well-defined DNA template. , 2008, Journal of the American Chemical Society.

[67]  T. Jain,et al.  Self-assembled nanogaps via seed-mediated growth of end-to-end linked gold nanorods. , 2009, ACS nano.

[68]  O. Gang,et al.  Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. , 2010, Nature nanotechnology.

[69]  S. Glotzer,et al.  Anisotropy of building blocks and their assembly into complex structures. , 2007, Nature materials.

[70]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[71]  Wolfgang J. Parak,et al.  Electrophoretic Separation of Nanoparticles with a Discrete Number of Functional Groups , 2006 .

[72]  J. Aizpurua,et al.  Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. , 2010, Nano letters.

[73]  A. Biswas,et al.  Single metal nanoparticle spectroscopy: optical characterization of individual nanosystems for biomedical applications. , 2010, Nanoscale.

[74]  Louis E. Brus,et al.  Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules , 2000 .

[75]  Li Zhang,et al.  Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. , 2009, Angewandte Chemie.

[76]  L. Liz‐Marzán,et al.  Light concentration at the nanometer scale , 2010 .

[77]  Tao Chen,et al.  Polymer-encapsulated gold-nanoparticle dimers: facile preparation and catalytical application in guided growth of dimeric ZnO-nanowires. , 2008, Nano letters.

[78]  Luis M Liz-Marzán,et al.  Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. , 2009, Journal of the American Chemical Society.

[79]  Martin Moskovits,et al.  Mapping local pH in live cells using encapsulated fluorescent SERS nanotags. , 2010, Small.

[80]  P. Nordlander,et al.  Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers. , 2010, ACS nano.

[81]  Fu-Ken Liu,et al.  Adding sodium dodecylsulfate to the running electrolyte enhances the separation of gold nanoparticles by capillary electrophoresis , 2004 .

[82]  John Gallop,et al.  Electromagnetic contribution to surface enhanced Raman scattering revisited , 2003 .

[83]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[84]  M. Pileni,et al.  Synthesis of Highly Monodisperse Silver Nanoparticles from AOT Reverse Micelles: A Way to 2D and 3D Self-Organization , 1997 .

[85]  Mohan Srinivasarao,et al.  Shape separation of gold nanorods using centrifugation , 2005, Proceedings of the National Academy of Sciences.

[86]  Luis M Liz-Marzán,et al.  Shape control in gold nanoparticle synthesis. , 2008, Chemical Society reviews.

[87]  L. Liz‐Marzán,et al.  Spectroscopy and high-resolution microscopy of single nanocrystals by a focused ion beam registration method. , 2007, Angewandte Chemie.

[88]  Peter Nordlander,et al.  Heterodimers: plasmonic properties of mismatched nanoparticle pairs. , 2010, ACS nano.

[89]  Luis M. Liz-Marzán,et al.  Environmental applications of plasmon assisted Raman scattering , 2010 .

[90]  M. Prato,et al.  Synthesis of multifunctional composite microgels via in situ Ni growth on pNIPAM-coated Au nanoparticles. , 2009, ACS nano.

[91]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[92]  E. Rabani,et al.  Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods , 2005 .

[93]  Oleg Gang,et al.  Stepwise surface encoding for high-throughput assembly of nanoclusters. , 2009, Nature materials.

[94]  Luis M Liz-Marzán,et al.  Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[95]  T. Laurence,et al.  Rapid, solution-based characterization of optimized SERS nanoparticle substrates. , 2009, Journal of the American Chemical Society.

[96]  D. Feldheim,et al.  Assembly of Phenylacetylene-Bridged Silver and Gold Nanoparticle Arrays , 2000 .

[97]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[98]  Chad A Mirkin,et al.  Gold nanoparticles for biology and medicine. , 2010, Angewandte Chemie.

[99]  Etching and dimerization: a simple and versatile route to dimers of silver nanospheres with a range of sizes. , 2010, Angewandte Chemie.

[100]  P. Vikesland,et al.  Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. , 2010, Environmental science & technology.

[101]  A. Polman,et al.  Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy. , 2007, Nano letters.

[102]  Benito Rodríguez-González,et al.  Synthesis and Optical Properties of Gold Nanodecahedra with Size Control , 2006 .

[103]  A Paul Alivisatos,et al.  Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level , 2009, Proceedings of the National Academy of Sciences.

[104]  Vincent M. Rotello,et al.  Applications of Nanoparticles in Biology , 2008 .

[105]  Chad A Mirkin,et al.  Asymmetric functionalization of gold nanoparticles with oligonucleotides. , 2006, Journal of the American Chemical Society.

[106]  K. Caswell,et al.  Size and shape separation of gold nanoparticles with preparative gel electrophoresis. , 2007, Journal of chromatography. A.

[107]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[108]  J. G. Elias,et al.  The dimensions of DNA in solution. , 1981, Journal of molecular biology.

[109]  George C Schatz,et al.  Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. , 2005, Journal of the American Chemical Society.

[110]  Madhu Anand,et al.  Precise and rapid size selection and targeted deposition of nanoparticle populations using CO2 gas expanded liquids. , 2005, Nano letters.

[111]  A. Henglein,et al.  Photochemistry of colloidal semiconductors 29. Fractionation of CdS sols of small particles by exclusion chromatography , 1989 .

[112]  L. Liz‐Marzán,et al.  High-yield synthesis and optical response of gold nanostars , 2008, Nanotechnology.

[113]  Amir Yacoby,et al.  Measurement of the conductance of single conjugated molecules , 2005, Nature.

[114]  A Paul Alivisatos,et al.  DNA-Based Assembly of Gold Nanocrystals. , 1999, Angewandte Chemie.

[115]  R. V. Van Duyne,et al.  Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. , 2008, Journal of the American Chemical Society.

[116]  F. G. D. Abajo,et al.  RELATIVISTIC ELECTRON ENERGY LOSS AND ELECTRON-INDUCED PHOTON EMISSION IN INHOMOGENEOUS DIELECTRICS , 1998 .

[117]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[118]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[119]  A. Alivisatos,et al.  Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications. , 2008, Nano letters.

[120]  James E. Martin,et al.  Size Distributions of Gold Nanoclusters Studied by Liquid Chromatography , 2000 .

[121]  Mathieu Kociak,et al.  Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. , 2009, Journal of the American Chemical Society.

[122]  Carsten Sönnichsen,et al.  Self-assembly of small gold colloids with functionalized gold nanorods. , 2007, Nano letters.

[123]  L. Liz‐Marzán,et al.  Rapid epitaxial growth of Ag on Au nanoparticles: from Au nanorods to core-shell Au@Ag octahedrons. , 2010, Chemistry.

[124]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[125]  H. Weller,et al.  Photochemistry of semiconductor colloids. 35. Size separation of colloidal cadmium sulfide by gel electrophoresis , 1990 .

[126]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[127]  Uri Banin,et al.  Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods , 2004, Science.

[128]  George C Schatz,et al.  Silver-based nanodisk codes. , 2010, ACS nano.

[129]  L. Liz‐Marzán,et al.  Formation of Silver Nanoprisms with Surface Plasmons at Communication Wavelengths , 2006 .

[130]  Yong Wang,et al.  High-purity separation of gold nanoparticle dimers and trimers. , 2009, Journal of the American Chemical Society.

[131]  Catherine J. Murphy,et al.  Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods , 2001 .

[132]  Fu-Hsiang Ko,et al.  Studying the size/shape separation and optical properties of silver nanoparticles by capillary electrophoresis. , 2005, Journal of chromatography. A.

[133]  L. Liz‐Marzán,et al.  Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms. , 2010, Nano letters.

[134]  Peter Nordlander,et al.  Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method , 2004 .