On existence and scattering theory for the Klein–Gordon–Schrödinger system in an infinite $$L^{2}$$L2-norm setting

This paper is concerned with the initial value problem for the nonlinear Klein–Gordon–Schrödinger (KGS) system in $$\mathbb {R}^{n}\times \mathbb {R},\, n\ge 1$$Rn×R,n≥1. We consider general polynomial nonlinearities that include in particular the classical Yukawa–KGS model. We show existence of local and global mild solutions for the KGS system with initial data in weak $$L^{r}$$Lr-spaces, which is an infinite $$L^{2}$$L2-norm setting. Moreover, we obtain a persistence result in $$H^{s}$$Hs when the initial data belong to this class, which shows that the constructed data-solution map in weak-$$L^{r}$$Lr recovers $$H^{s} $$Hs-regularity. We also prove results of scattering and wave operators in that singular framework.

[1]  Elder J. Villamizar-Roa,et al.  Self-similarity and asymptotic stability for coupled nonlinear Schrödinger equations in high dimensions , 2012 .

[2]  T. Cazenave,et al.  Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations , 1998 .

[3]  A. Shimomura Scattering Theory for the Coupled Klein-Gordon-Schrödinger Equations in Two Space Dimensions , 2005 .

[4]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[5]  H. Pecher Low regularity well-posedness for the 3D Klein-Gordon-Schr\ , 2010, 1011.3128.

[6]  Baoxiang Wang Classical Global Solutions for Non‐linear Klein–Gordon–Schrödinger Equations , 1997 .

[7]  Piotr Biler Attractors for the system of Schro¨dinger and Klein-Gordon equations with Yukawa coupling , 1990 .

[8]  B. Marshall L^p-L^q estimates for the Klein-Gordon equation , 1980 .

[9]  Tohru Ozawa,et al.  Asymptotic Behavior of Solutions for the Coupled Klein–Gordon–Schrödinger Equations , 1994 .

[10]  Hiroko Morimoto,et al.  On the Navier-Stokes initial value problem , 1974 .

[12]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[13]  Y. Giga,et al.  Navier‐Stokes flow in R3 with measures as initial vorticity and Morrey spaces , 1988 .

[14]  A. Shimomura Wave operators for the coupled Klein-Gordon-Schrodinger equations in two space dimensions , 2004 .

[15]  Thierry Cazenave,et al.  Scattering Theory and Self-Similar Solutions for the Nonlinear Schrödinger Equation , 2000, SIAM J. Math. Anal..

[16]  Changxing Miao,et al.  Global solutions of the KleinGordonSchrdinger system with rough data in R 2 + 1 , 2006 .

[17]  L. Ferreira,et al.  Existence of solutions to the convection problem in a pseudomeasure-type space , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Marcelo M. Cavalcanti,et al.  Uniform decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping , 2008 .

[19]  Marcelo M. Cavalcanti,et al.  Global existence and uniform decay for the coupled Klein-Gordon-Schrödinger equations , 2000 .

[20]  N. Tzirakis The Cauchy Problem for the Klein–Gordon–Schrödinger System in Low Dimensions Below the Energy Space , 2005 .

[21]  Alain Bachelot Problème de Cauchy pour des systèmes hyperboliques semi‐linéaires , 1984, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[22]  L. Farah,et al.  On the wave operator for the generalized Boussinesq equation , 2012 .

[23]  Yong Li,et al.  Well posedness for the nonlinear Klein–Gordon–Schrödinger equations with heterointeractions , 2010 .

[24]  M. Cannone,et al.  Self-similar solutions for navier-stokes equations in , 1996 .

[25]  T. Cazenave,et al.  A NOTE ON THE NONLINEAR SCHRÖDINGER EQUATION IN WEAK Lp SPACES , 2001 .

[26]  L. Ferreira Existence and scattering theory for Boussinesq type equations with singular data , 2011 .

[27]  H. Yukawa On the Interaction of Elementary Particles I , 1955 .

[28]  H. Pecher Some new well-posedness results for the Klein-Gordon-Schrödinger system , 2011, Differential and Integral Equations.

[29]  É. J. Villamizar-Roa,et al.  On the existence of infinite energy solutions for nonlinear Schrödinger equations , 2007, 0711.3441.

[30]  Jean-Claude Saut,et al.  Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-I equation , 2002 .

[31]  Shumao Liu Remarks on infinite energy solutions of nonlinear wave equations , 2009 .

[32]  Fred B. Weissler,et al.  The Navier-Stokes initial value problem in Lp , 1980 .

[33]  Masayoshi Tsutsumi,et al.  On coupled Klein-Gordon-Schrödinger equations, II , 1978 .

[34]  Jean-Claude Saut,et al.  Ill-Posedness Issues for the Benjamin-Ono and Related Equations , 2001, SIAM J. Math. Anal..

[35]  J. Baillon,et al.  The Cauchy Problem for the Coupled Schroedinger-Klein-Gordon Equations , 1978 .

[36]  H. Kozono,et al.  Semilinear heat equations and the navier-stokes equation with distributions in new function spaces as initial data , 1994 .

[37]  Wolf von Wahl,et al.  On the global strong solutions of coupled Klein-Gordon-Schrödinger equations , 1987 .

[38]  Isamu Fukuda,et al.  On the Yukawa-coupled Klein-Gordon-Schrödinger equations in three space dimensions , 1975 .

[39]  Nikolaos Tzirakis,et al.  Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schr\ , 2006, math/0603595.