On existence and scattering theory for the Klein–Gordon–Schrödinger system in an infinite $$L^{2}$$L2-norm setting
暂无分享,去创建一个
Elder J. Villamizar-Roa | Carlos Banquet | Lucas C. F. Ferreira | É. J. Villamizar-Roa | L. Ferreira | Carlos Banquet
[1] Elder J. Villamizar-Roa,et al. Self-similarity and asymptotic stability for coupled nonlinear Schrödinger equations in high dimensions , 2012 .
[2] T. Cazenave,et al. Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations , 1998 .
[3] A. Shimomura. Scattering Theory for the Coupled Klein-Gordon-Schrödinger Equations in Two Space Dimensions , 2005 .
[4] Hiroshi Fujita,et al. On the Navier-Stokes initial value problem. I , 1964 .
[5] H. Pecher. Low regularity well-posedness for the 3D Klein-Gordon-Schr\ , 2010, 1011.3128.
[6] Baoxiang Wang. Classical Global Solutions for Non‐linear Klein–Gordon–Schrödinger Equations , 1997 .
[7] Piotr Biler. Attractors for the system of Schro¨dinger and Klein-Gordon equations with Yukawa coupling , 1990 .
[8] B. Marshall. L^p-L^q estimates for the Klein-Gordon equation , 1980 .
[9] Tohru Ozawa,et al. Asymptotic Behavior of Solutions for the Coupled Klein–Gordon–Schrödinger Equations , 1994 .
[10] Hiroko Morimoto,et al. On the Navier-Stokes initial value problem , 1974 .
[12] Takashi Kato,et al. StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .
[13] Y. Giga,et al. Navier‐Stokes flow in R3 with measures as initial vorticity and Morrey spaces , 1988 .
[14] A. Shimomura. Wave operators for the coupled Klein-Gordon-Schrodinger equations in two space dimensions , 2004 .
[15] Thierry Cazenave,et al. Scattering Theory and Self-Similar Solutions for the Nonlinear Schrödinger Equation , 2000, SIAM J. Math. Anal..
[16] Changxing Miao,et al. Global solutions of the KleinGordonSchrdinger system with rough data in R 2 + 1 , 2006 .
[17] L. Ferreira,et al. Existence of solutions to the convection problem in a pseudomeasure-type space , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[18] Marcelo M. Cavalcanti,et al. Uniform decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping , 2008 .
[19] Marcelo M. Cavalcanti,et al. Global existence and uniform decay for the coupled Klein-Gordon-Schrödinger equations , 2000 .
[20] N. Tzirakis. The Cauchy Problem for the Klein–Gordon–Schrödinger System in Low Dimensions Below the Energy Space , 2005 .
[21] Alain Bachelot. Problème de Cauchy pour des systèmes hyperboliques semi‐linéaires , 1984, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.
[22] L. Farah,et al. On the wave operator for the generalized Boussinesq equation , 2012 .
[23] Yong Li,et al. Well posedness for the nonlinear Klein–Gordon–Schrödinger equations with heterointeractions , 2010 .
[24] M. Cannone,et al. Self-similar solutions for navier-stokes equations in , 1996 .
[25] T. Cazenave,et al. A NOTE ON THE NONLINEAR SCHRÖDINGER EQUATION IN WEAK Lp SPACES , 2001 .
[26] L. Ferreira. Existence and scattering theory for Boussinesq type equations with singular data , 2011 .
[27] H. Yukawa. On the Interaction of Elementary Particles I , 1955 .
[28] H. Pecher. Some new well-posedness results for the Klein-Gordon-Schrödinger system , 2011, Differential and Integral Equations.
[29] É. J. Villamizar-Roa,et al. On the existence of infinite energy solutions for nonlinear Schrödinger equations , 2007, 0711.3441.
[30] Jean-Claude Saut,et al. Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-I equation , 2002 .
[31] Shumao Liu. Remarks on infinite energy solutions of nonlinear wave equations , 2009 .
[32] Fred B. Weissler,et al. The Navier-Stokes initial value problem in Lp , 1980 .
[33] Masayoshi Tsutsumi,et al. On coupled Klein-Gordon-Schrödinger equations, II , 1978 .
[34] Jean-Claude Saut,et al. Ill-Posedness Issues for the Benjamin-Ono and Related Equations , 2001, SIAM J. Math. Anal..
[35] J. Baillon,et al. The Cauchy Problem for the Coupled Schroedinger-Klein-Gordon Equations , 1978 .
[36] H. Kozono,et al. Semilinear heat equations and the navier-stokes equation with distributions in new function spaces as initial data , 1994 .
[37] Wolf von Wahl,et al. On the global strong solutions of coupled Klein-Gordon-Schrödinger equations , 1987 .
[38] Isamu Fukuda,et al. On the Yukawa-coupled Klein-Gordon-Schrödinger equations in three space dimensions , 1975 .
[39] Nikolaos Tzirakis,et al. Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schr\ , 2006, math/0603595.