Equations of state and phase equilibria of stishovite and a coesitelike phase from shock‐wave and other data

Shock-wave, static-compression (X ray), ultrasonic, thermal expansion, and thermodynamic data are simultaneously inverted to determine the equations of state of stishovite and a coesitelike SiO2 phase. All the stishovite data except the thermal expansion data are satisfied by a Mie-Gruneisen-type equation of state having a zero pressure bulk modulus K of about 3.50 ± 0.1 Mb, a pressure derivative dK/dP of 3.3 ± 1, and a Gruneisen parameter, initially 1.25 ± 0.1, that decreases slowly with compression. The volume coefficient of thermal expansion at ambient conditions is found to be 13 ± 1 × 10−6/°K, in comparison with 16.4 ± 1.3 measured by Weaver. Some Hugoniot data of Trunin et al. for very porous quartz have densities very close to the density of coesite. However, a calculation of the coesite-stishovite phase line shows that the coesitelike phase persists to about twice the predicted transition pressure at 10,000°K. It is suggested that the discrepancy can be explained if this phase is interpreted as a liquid of about coesite density.

[1]  Y. Syono,et al.  Coesite‐Stishovite transition , 1969 .

[2]  William A. Bassett,et al.  Effect of pressure on the crystal structure and the lattice parameters of BaO , 1972 .

[3]  J. C. Slater Introduction to chemical physics , 1933 .

[4]  M. Nicol,et al.  Raman Spectrum and Polymorphism of Titanium Dioxide at High Pressures , 1971 .

[5]  L. Thomsen The fourth-order anharmonic theory: Elasticity and stability , 1972 .

[6]  F. Birch Elasticity and Constitution of the Earth's Interior , 1952 .

[7]  Jerry Wackerle,et al.  Shock‐Wave Compression of Quartz , 1962 .

[8]  R. A. Robie,et al.  SECTION 5: X-RAY CRYSTALLOGRAPHIC DATA, DENSITIES, AND MOLAR VOLUMES OF MINERALS , 1966 .

[9]  S. P. Marsh,et al.  On the equation of state of stishovite , 1963 .

[10]  O. J. Kleppa,et al.  Thermodynamics of polymorphic transformations in silica. Thermal properties from 5 to 1070° K and pressure-temperature stability fields for coesite and stishovite , 1967 .

[11]  Leon Thomsen,et al.  On the fourth-order anharmonic equation of state of solids , 1970 .

[12]  L. Knopoff,et al.  Comments on the interrelationships between Grüneisen's parameter and shock and isothermal equations of state , 1969 .

[13]  H. Mao,et al.  Pressure‐Induced Phase Transformation in NaCl , 1968 .

[14]  Hitoshi Mizutani,et al.  Elastic‐wave velocities of polycrystalline stishovite , 1972 .

[15]  J. S. Dugdale,et al.  The Thermal Expansion of Solids , 1953 .

[16]  W. Bassett,et al.  Isothermal compression of stishovite and coesite up to 85 kilobars at room temperature by X-ray diffraction , 1970 .

[17]  Taro Takahashi,et al.  A proposed equation of state of stishovite , 1970 .

[18]  Don L. Anderson,et al.  Equations of State and Crystal Structures of High-Pressure Phases of Shocked Silicates and Oxides , 1969 .

[19]  S. J. Green,et al.  Material Properties Measurements for Selected Materials , 1968 .

[20]  Naohiro Soga,et al.  Some elastic constant data on minerals relevant to geophysics , 1968 .

[21]  W. Ludwig,et al.  Theory of Anharmonic Effects in Crystals , 1961 .

[22]  Brian J. Skinner,et al.  SECTION 6: THERMAL EXPANSION , 1966 .

[23]  D. L. Anderson,et al.  Shock‐wave equations of state for rocks and minerals , 1968 .

[24]  R. Ruppin,et al.  Volume Dependence of the Grüneisen Parameter of Alkali Halides , 1971 .