9 Rare Processes and Precision Measurements Frontier Frontier Conveners :

The Rare Processes and Precision Measurements Frontier, referred to as the “Rare and Precision Frontier”, or RPF, encompasses searches for extremely rare processes or tiny deviations from the Standard Model (SM) that can be studied with intense sources and high precision detectors. Our community studies have identified several unique research opportunities that may pin down the scales associated with New Physics (NP) interactions and constrain the couplings of possible new degrees of freedom. Studies of rare flavor transition transitions and precision measurements are indispensable probes of flavor and fundamental symmetries, and provide insights into physics that manifests itself at higher energy or through weaker interactions than those directly accessible at high-energy colliders.

[1]  D. Whiteson,et al.  The Future of High Energy Physics Software and Computing , 2022, 2210.05822.

[2]  Cea,et al.  Report of the Instrumentation Frontier Working Group for Snowmass 2021 , 2022, 2209.14111.

[3]  Thomas Y. Chen,et al.  Fundamental Physics in Small Experiments , 2022, 2209.08041.

[4]  E. Passemar,et al.  Weak Decays of Strange and Light Quarks , 2022, 2209.07156.

[5]  P. Harris,et al.  Dark Sector Physics at High-Intensity Experiments , 2022, 2209.04671.

[6]  S. Meinel,et al.  Weak Decays of $b$ and $c$ Quarks , 2022, 2208.05403.

[7]  B. Fulsom,et al.  Summary of Topical Group on Hadron Spectroscopy (RF07) Rare Processes and Precision Frontier of Snowmass 2021 , 2022, 2207.14594.

[8]  C. Hearty,et al.  Exploring Dark Sector Portals with High Intensity Experiments , 2022, 2207.06905.

[9]  S. Pagan Griso,et al.  Detector Simulation Challenges for Future Accelerator Experiments , 2022, Frontiers in Physics.

[10]  Jonathan L. Feng,et al.  Experiments and Facilities for Accelerator-Based Dark Sector Searches , 2022, 2206.04220.

[11]  C. DeTar,et al.  A lattice QCD perspective on weak decays of b and c quarks Snowmass 2022 White Paper , 2022, 2205.15373.

[12]  Lawrence Berkeley National Laboratory,et al.  Enabling Capabilities for Infrastructure and Workforce in Electronics and ASICs , 2022, 2204.07285.

[13]  S. Milton,et al.  LANSCE-PSR Short-Pulse Upgrade for Improved Dark Sector Particle Searches with the Coherent Captain Mills Experiment , 2022, 2204.01860.

[14]  B. Joó,et al.  Lattice QCD and the Computational Frontier , 2022, 2204.00039.

[15]  F. Forti Snowmass Whitepaper: The Belle II Detector Upgrade Program , 2022, 2203.11349.

[16]  A. Buras,et al.  On the Importance of Rare Kaon Decays: A Snowmass 2021 White Paper , 2022, 2203.09524.

[17]  R. Culbertson,et al.  A New Charged Lepton Flavor Violation Program at Fermilab , 2022, 2203.08278.

[18]  M. Berz,et al.  Electric dipole moments and the search for new physics , 2022, 2203.08103.

[19]  A. Artikov,et al.  Mu2e-II: Muon to electron conversion with PIP-II , 2022, 2203.07569.

[20]  K. Genser,et al.  Software and Computing for Small HEP Experiments , 2022, 2203.07645.

[21]  Seth R. Johnson,et al.  Detector and Beamline Simulation for Next-Generation High Energy Physics Experiments , 2022, 2203.07614.

[22]  R. Culbertson,et al.  Physics Opportunities for the Fermilab Booster Replacement , 2022, 2203.03925.

[23]  L. Caminada,et al.  PIONEER: Studies of Rare Pion Decays , 2022, 2203.01981.

[24]  R. A. Mohammed,et al.  Test of lepton universality in beauty-quark decays , 2022, Nature Physics.

[25]  J. Zupan,et al.  New physics searches at kaon and hyperon factories , 2022, Reports on progress in physics. Physical Society.

[26]  M. Aiba,et al.  Science Case for the new High-Intensity Muon Beams HIMB at PSI , 2021, 2111.05788.

[27]  A. Somov The JLab Eta Factory (JEF) experiment , 2021, The 10th International Workshop on Chiral Dynamics 2021, Beijing, China, November 15, 2021.

[28]  M. Lancaster,et al.  Measurement of proton, deuteron, triton, and α particle emission after nuclear muon capture on Al, Si, and Ti with the AlCap experiment , 2021, Physical Review C.

[29]  R. A. Mohammed,et al.  Simultaneous determination of CKM angle γ and charm mixing parameters , 2021, Journal of High Energy Physics.

[30]  Ny,et al.  Analysis of Neutral B-Meson Decays into Two Muons. , 2021, Physical review letters.

[31]  F. Grancagnolo,et al.  The Search for μ+ → e+γ with 10-14 Sensitivity: The Upgrade of the MEG Experiment , 2021, Symmetry.

[32]  I. A. Monroy,et al.  Observation of the mass difference between neutral charm-meson eigenstates , 2021, 2106.03744.

[33]  R. A. Mohammed,et al.  Search for time-dependent CP violation in D0 -> K+ K- and D0 -> pi+ pi- decays , 2021 .

[34]  E. Smith The Early Career, Gender & Diversity at LHCb , 2021 .

[35]  N. collaboration,et al.  Rare decays at the CERN high-intensity kaon beam facility , 2020, 2009.10941.

[36]  H. Shimizu,et al.  New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the HIBEAM/NNBAR experiment at the European Spallation Source , 2020, Journal of Physics G: Nuclear and Particle Physics.

[37]  C. DeTar,et al.  The anomalous magnetic moment of the muon in the Standard Model , 2020, Physics Reports.

[38]  A. Khodjamirian Hadron Form Factors: From Basic Phenomenology to QCD Sum Rules , 2020 .

[39]  T. Lippert,et al.  Leading hadronic contribution to the muon magnetic moment from lattice QCD , 2020, Nature.

[40]  M. Burghoff,et al.  Measurement of the Permanent Electric Dipole Moment of the Neutron. , 2020, Physical review letters.

[41]  P. T. Surukuchi,et al.  Improved Limit on Neutrinoless Double-Beta Decay in ^{130} Te with CUORE. , 2019, Physical review letters.

[42]  M. Sokoloff,et al.  Allen: A High-Level Trigger on GPUs for LHCb , 2019, Computing and software for big science.

[43]  A. Voronin,et al.  A new approach to search for free neutron-antineutron oscillations using coherent neutron propagation in gas , 2019, 1912.06730.

[44]  Li-Yu Daisy Liu,et al.  Future Physics Programme of BESIII , 2019, Chinese Physics C.

[45]  M. D'Onofrio,et al.  Physics Briefing Book [Input for the European Strategy for Particle Physics Update 2020] , 2019 .

[46]  A. B. Kaliyar,et al.  Measurement of R(D) and R(D^{*}) with a Semileptonic Tagging Method. , 2019, Physical review letters.

[47]  M. Dorigo,et al.  Observation of CP Violation in Charm Decays. , 2019, Physical review letters.

[48]  A. Boveia,et al.  Dark Matter Searches at Colliders , 2018, Annual Review of Nuclear and Particle Science.

[49]  J. Incandela,et al.  Basic Research Needs for Dark-Matter Small Projects New Initiatives: Report of the Department of Energy’s High Energy Physics Workshop on Dark Matter , 2018 .

[50]  B. Kerbikov The effect of collisions with the wall on neutron-antineutron transitions , 2018, Physics Letters B.

[51]  T. Aushev,et al.  The Belle II Physics Book , 2018, Progress of Theoretical and Experimental Physics.

[52]  I. A. Monroy,et al.  Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era , 2018, 1808.08865.

[53]  J. Incandela,et al.  The Light Dark Matter eXperiment (LDMX) , 2018, Proceedings of The 39th International Conference on High Energy Physics — PoS(ICHEP2018).

[54]  T. Aushev,et al.  Search for $\boldsymbol{B\to h\nu\bar{\nu}}$ decays with semileptonic tagging at Belle , 2017, 1702.03224.

[55]  Marco Nardecchia,et al.  Gauge leptoquark as the origin of B-physics anomalies. , 2017, 1708.08450.

[56]  A. Nelson,et al.  Baryogenesis from oscillations of charmed or beautiful baryons , 2017, 1708.01259.

[57]  M. Kelsey,et al.  Test of lepton universality with B 0 → K *0 ℓ + ℓ − decays , 2017, 1705.05802.

[58]  D. Leith,et al.  Search for B^{+}→K^{+}τ^{+}τ^{-} at the BaBar Experiment. , 2017, Physical review letters.

[59]  M. Dorigo,et al.  Determination of the quark coupling strength |Vub| using baryonic decays , 2015, Nature Physics.

[60]  D. Straub,et al.  Violation of lepton flavour universality in composite Higgs models , 2015, 1503.03865.

[61]  F. Bedeschi,et al.  The Storage Ring Proton EDM Experiment , 2014, 2205.00830.

[62]  Niklaus Berger,et al.  The Mu3e Experiment , 2014 .

[63]  Michael Trott,et al.  Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology , 2013, Journal of High Energy Physics.

[64]  R. Brock,et al.  Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 1: Summary , 2014, 1401.6075.

[65]  Michael Trott,et al.  Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence , 2013, Journal of High Energy Physics.

[66]  M. Lancaster,et al.  Accelerator system for the PRISM based muon to electron conversion experiment , 2013, 1310.0804.

[67]  E. Jenkins,et al.  Renormalization group evolution of the standard model dimension six operators. I: formalism and λ dependence , 2013, Journal of High Energy Physics.

[68]  Claudius Krause,et al.  Complete electroweak chiral Lagrangian with a light Higgs at NLO , 2013, 1307.5017.

[69]  E. Pous Search for B→K(*)νν¯ and invisible quarkonium decays , 2013 .

[70]  J. Arnold,et al.  Simplified models with baryon number violation but no proton decay , 2012, 1212.4556.

[71]  Jure Zupan,et al.  Flavor violating Higgs decays , 2012, 1209.1397.

[72]  M. Lancaster,et al.  Status of the PRISM FFAG Design for the Next Generation Muon-to-Electron Conversion Experiment , 2012 .

[73]  L. A. Granado Cardoso,et al.  Searches for Majorana neutrinos in B- decays , 2012, 1201.5600.

[74]  A. Pich,et al.  Kaon Decays in the Standard Model , 2011, 1107.6001.

[75]  E. al.,et al.  Study of B→πℓν and B→ρℓν decays and determination of |Vub| , 2010, 1005.3288.

[76]  M. Wise,et al.  Baryon and Lepton Number as Local Gauge Symmetries , 2010, 1002.1754.

[77]  W. Królikowski A Hidden Valley model of cold dark matter with photonic portal , 2008, 0803.2977.

[78]  M. Pospelov,et al.  Secluded WIMP Dark Matter , 2007, 0711.4866.

[79]  M. Pierini,et al.  Model-independent constraints on ΔF = 2 operators and the scale of new physics , 2007, 0707.0636.

[80]  E. al.,et al.  Measurement of CP Asymmetries in B0->Ks Pi0 Pi0 Decays , 2005, hep-ex/0508017.

[81]  T. Yanagida,et al.  Leptogenesis as the origin of matter , 2005, hep-ph/0502169.

[82]  M. Kakizaki,et al.  Lepton flavor violation in the triplet Higgs model , 2003, hep-ph/0304254.

[83]  J. J. Walsh,et al.  The Physics of the B Factories , 2001, 1406.6311.

[84]  R. E. Hall,et al.  Measurement of the W boson mass. , 1995, Physical review letters.

[85]  L. Wolfenstein Parametrization of the Kobayashi-Maskawa Matrix , 1983 .

[86]  M. Özer NEUTRON ANTI-NEUTRON OSCILLATIONS AND RENORMALIZATION EFFECTS FOR DELTA B = 2 SIX QUARK OPERATORS , 1982 .

[87]  José W. F. Valle,et al.  Neutrino masses in SU(2) ⊗ U(1) theories , 1980 .

[88]  H. Weldon,et al.  Operator analysis of new physics , 1980 .

[89]  P. Christillin,et al.  Radiative muon capture in medium-heavy nuclei , 1980 .

[90]  H. Georgi,et al.  Unity of All Elementary Particle Forces , 1974 .

[91]  Joshua R. Smith,et al.  Experimental limit to the electric dipole moment of the neutron , 1957 .

[92]  G. Khoriauli,et al.  Measurement of the very rare 𝑲 + → 𝝅 + 𝝂 ¯ 𝝂 decay , 2021 .

[93]  A. B. Kaliyar,et al.  Search for B + → K + ν ¯ ν Decays Using an Inclusive Tagging Method at Belle II , 2021 .

[94]  I. A. Monroy,et al.  Updated measurement of time-dependent CP-violating observables in Bs0J/K+ K-decays , 2020 .

[95]  Infn Roma,et al.  The quest for μ → e γ and its experimental limiting factors at future high intensity muon beams , 2018 .

[96]  K. Peters,et al.  Update to the JEF proposal ( PR 12-14-004 ) , 2017 .

[97]  C. LHCb,et al.  Search for the lepton flavour violating decay τ$^−$ → μ$^−$ μ$^+$ μ$^−$ , 2015 .

[98]  Matthew Shepherd,et al.  Reaching for the horizon: The 2015 long range plan for nuclear science , 2015 .

[99]  K. Cho,et al.  N ov 2 01 4 Belle Preprint 2014-15 KEK Preprint 2014-26 Measurement of the B → X s γ Branching Fraction with a Sum of Exclusive Decays , 2014 .

[100]  D. Leith,et al.  Precision measurement of the B → Xs γ photon energy spectrum, branching fraction, and direct CP asymmetry A(CP)((B → X(s+d)γ). , 2012, Physical review letters.

[101]  H. J. Kim,et al.  Precise measurement of the CP violation parameter sin2φ1 in B0→(cc¯)K0 decays. , 2012, Physical review letters.

[102]  K. Cho,et al.  Measurement of the decay B 0 ! , 2011 .

[103]  Nova Gorica Polytechnic,et al.  Search for the decay B 0 , 2006 .

[104]  A. Sakharov Violation of Cp-Invariance C-Asymmetry and Baryon Asymmetry of the Universe , 1998 .