Evoked potential study of hippocampal efferent projections in the human brain

OBJECTIVE To explore in human potential hippocampal projections within and outside the temporal lobe. METHODS We performed intra-cerebral electrical stimulations in seven patients investigated by depth electrodes for refractory epilepsy and analyzed the presence of evoked potentials (EPs) in all brain regions explored. Bipolar electrical stimulations, consisting of two series of 25 pulses of 1 ms duration, 0.2 Hz frequency, and 3 mA intensity, were delivered in a total of 36 hippocampal stimulations sites. RESULTS Reproducible EPs were recorded in several brain regions with variable latencies, amplitudes and morphologies. Within the temporal lobe, EPs were present in the amygdala, entorhinal cortex, temporal pole and temporal neocortex. EPs were also observed in the frontal lobe, anterior cingulate gyrus and orbito-frontal cortex, midcingulate and posterior cingulate gyrus, insula and thalamic pulvinar nucleus. CONCLUSION Our results demonstrate a large distribution of direct or indirect hippocampal projections. SIGNIFICANCE This widespread connectivity supports the previous definition of different networks involved mainly in memory and behavioral processes, implicating the temporal lobe, the cingulate gyrus or the prefrontal region. Our data provide some clues to further evaluate potential pathways of propagation of mesial temporal lobe seizure, via the insula or the pulvinar nucleus.

[1]  D. Amaral,et al.  Hippocampal‐neocortical interaction: A hierarchy of associativity , 2000, Hippocampus.

[2]  P. Goldman-Rakic,et al.  Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys , 1981, The Journal of comparative neurology.

[3]  P S Goldman-Rakic,et al.  Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey , 1997, The Journal of comparative neurology.

[4]  R. Fisher,et al.  Parameters for direct cortical electrical stimulation in the human: histopathologic confirmation. , 1990, Electroencephalography and clinical neurophysiology.

[5]  D L Rosene,et al.  Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: Projections from CA1, prosubiculum, and subiculum to the temporal lobe , 1998, The Journal of comparative neurology.

[6]  R. K. Hutson,et al.  Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer's disease and mild cognitive impairment , 2008, Alzheimer's & Dementia.

[7]  B. Seltzer,et al.  Neurochemical and connectional organization of the dorsal pulvinar complex in monkeys , 2000, The Journal of comparative neurology.

[8]  M Mishkin,et al.  The origin, course, and termination of the hippocampothalamic projections in the macaque , 1986, The Journal of comparative neurology.

[9]  D. Amaral,et al.  Amygdalo‐cortical projections in the monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[10]  John S. Duncan,et al.  Noninvasive in vivo demonstration of the connections of the human parahippocampal gyrus , 2004, NeuroImage.

[11]  I. Liberzon,et al.  The Neurocircuitry of Fear, Stress, and Anxiety Disorders , 2011, Neuropsychopharmacology.

[12]  C. Wilson,et al.  Functional connections in the human temporal lobe , 1990, Experimental Brain Research.

[13]  Orrin Devinsky,et al.  Electrical and Magnetic Stimulation of the Brain and Spinal Cord , 1993 .

[14]  P. Morgane,et al.  A review of systems and networks of the limbic forebrain/limbic midbrain , 2005, Progress in Neurobiology.

[15]  P Kahane,et al.  Ictal clinical and scalp-EEG findings differentiating temporal lobe epilepsies from temporal 'plus' epilepsies. , 2007, Brain : a journal of neurology.

[16]  J Bancaud,et al.  Unilateral connections between amygdala and hippocampus in man. A study of epileptic patients with depth electrodes. , 1983, Electroencephalography and clinical neurophysiology.

[17]  Maria Thom,et al.  Investigation of widespread neocortical pathology associated with hippocampal sclerosis in epilepsy: A postmortem study , 2011, Epilepsia.

[18]  A L Benabid,et al.  Intracerebral low frequency electrical stimulation: a new tool for the definition of the "epileptogenic area"? , 1993, Acta neurochirurgica. Supplementum.

[19]  Lisa M Shin,et al.  Functional neuroimaging studies of post-traumatic stress disorder , 2011, Expert review of neurotherapeutics.

[20]  P. Gloor,et al.  The human dorsal hippocampal commissure. An anatomically identifiable and functional pathway. , 1993, Brain : a journal of neurology.

[21]  F. Mauguière,et al.  The role of the insular cortex in temporal lobe epilepsy , 2000, Annals of neurology.

[22]  M. Mesulam,et al.  Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum , 1982, The Journal of comparative neurology.

[23]  J. Talairach,et al.  [Amygdalo-hippocampic connections in humans. Physiologic study during stereotaxic explorations]. , 1968, Revue neurologique.

[24]  D L Rosene,et al.  Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non‐reciprocal connections , 1988, The Journal of comparative neurology.

[25]  Jerome Engel,et al.  Role of the Frontal Lobes in the Propagation of Mesial Temporal Lobe Seizures , 1991, Epilepsia.

[26]  L. Swanson,et al.  Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  T L Babb,et al.  A circuit for safe diagnostic electrical stimulation of the human brain. , 1980, Neurological research.

[28]  H. Burton,et al.  The posterior thalamic region and its cortical projection in new world and old world monkeys , 1976, The Journal of comparative neurology.

[29]  C. Geula,et al.  Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey , 1992, The Journal of comparative neurology.

[30]  H. Duvernoy The Human Hippocampus: An Atlas of Applied Anatomy , 1988 .

[31]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[32]  F. Mauguière,et al.  Reciprocal thalamocortical connectivity of the medial pulvinar: a depth stimulation and evoked potential study in human brain. , 2009, Cerebral cortex.

[33]  K M Bertashius,et al.  Propagation of human complex-partial seizures: a correlation analysis. , 1991, Electroencephalography and clinical neurophysiology.

[34]  J. Talairach,et al.  Stereotaxic Approach to Epilepsy , 1973 .

[35]  R. Insausti,et al.  Cortical efferents of the entorhinal cortex and the adjacent parahippocampal region in the monkey (Macaca fascicularis) , 2005, The European journal of neuroscience.

[36]  D L Rosene,et al.  A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal, and perirhinal cortices , 1988, The Journal of comparative neurology.

[37]  J. Isnard,et al.  Hippocampal-orbitofrontal connectivity in human: An electrical stimulation study , 2005, Clinical Neurophysiology.

[38]  J P Lieb,et al.  Inter-hemispheric propagation of human mesial temporal lobe seizures: a coherence/phase analysis. , 1987, Electroencephalography and clinical neurophysiology.

[39]  F Mauguiere,et al.  Anatomical evidence for medial pulvinar connections with the posterior cingulate cortex, the retrosplenial area, and the posterior parahippocampal gyrus in monkeys , 1985, The Journal of comparative neurology.

[40]  H. Barbas,et al.  Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey , 1995, Hippocampus.

[41]  C. Wilson,et al.  Electrical stimulation of the human epileptic limbic cortex. , 1993, Advances in neurology.

[42]  A. Morel,et al.  Segregated thalamocortical pathways to inferior parietal and inferotemporal cortex in macaque monkey , 1992, Visual Neuroscience.

[43]  P. M. Wall,et al.  The hippocampal formation — orbitomedial prefrontal cortex circuit in the attentional control of active memory , 2001, Behavioural Brain Research.

[44]  Philippe Kahane,et al.  The hidden causes of surgery-resistant temporal lobe epilepsy: extratemporal or temporal plus? , 2005, Current opinion in neurology.

[45]  François Mauguière,et al.  Involvement of Medial Pulvinar Thalamic Nucleus in Human Temporal Lobe Seizures , 2006, Epilepsia.

[46]  D. Amaral,et al.  The entorhinal cortex of the monkey: II. Cortical afferents , 1987, The Journal of comparative neurology.

[47]  J. Régis,et al.  The role of corticothalamic coupling in human temporal lobe epilepsy. , 2006, Brain : a journal of neurology.

[48]  Michael Erb,et al.  Successful Verbal Retrieval in Elderly Subjects Is Related to Concurrent Hippocampal and Posterior Cingulate Activation , 2006, Dementia and Geriatric Cognitive Disorders.

[49]  R. Insausti,et al.  Cortical projections of the non‐entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis) , 2001, The European journal of neuroscience.

[50]  Marc Guenot,et al.  Neurophysiological Monitoring for Epilepsy Surgery: The Talairach SEEG Method , 2002, Stereotactic and Functional Neurosurgery.

[51]  R G Grossman,et al.  Electrophysiological connections between the hippocampus and entorhinal cortex in patients with complex partial seizures. , 1989, Journal of neurosurgery.

[52]  Gonzalo Alarcón,et al.  Single pulse electrical stimulation for identification of structural abnormalities and prediction of seizure outcome after epilepsy surgery: a prospective study , 2005, The Lancet Neurology.