Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces
暂无分享,去创建一个
W. Linhart | J. Rueger | N. Meenen | D. Briem | J. M. Rueger | W. Lehmann | W. Lehmann | D. Briem | W. Linhart | S. Strametz | K. Schröoder | N. M. Meenen | A. Ohl | A. Ohl | S. Strametz | K. Schröoder | Wolfgang Lehmann | K. Schröder | Norbert M. Meenen | Wolfgang Linhart | Johannes M. Rueger | W. Linhart
[1] T. Horbett,et al. Proteins at interfaces II : fundamentals and applications : developed from a symposium sponsored by the Division of Colloid and Surface Science at the 207th National Meeting of the American Chemical Society, San Diego, California, March 13-17, 1994 , 1995 .
[2] M. Grant,et al. In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts. , 1995, Biomaterials.
[3] J. Hollinger,et al. Macrophysiologic Roles of a Delivery System for Vulnerary Factors Needed for Bone Regeneration , 1997, Annals of the New York Academy of Sciences.
[4] B. Ratner. Biomedical Applications of Synthetic Polymers , 1989 .
[5] P S Walker,et al. Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopaedic use. , 1995, Biomaterials.
[6] G. Karsenty,et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. , 1999, Genes & development.
[7] D. Castner,et al. Surface Modification of Polymeric Biomaterials , 1997 .
[8] R. Jilka,et al. Formation of bone by isolated, cultured osteoblasts in millipore diffusion chambers , 1982, Calcified Tissue International.
[9] R. M. Turner,et al. Potential of polyetheretherketone (PEEK) and carbon-fibre-reinforced PEEK in medical applications , 1987 .
[10] O. Noiset,et al. Fibronectin adsorption or/and covalent grafting on chemically modified PEEK film surfaces. , 1999, Journal of biomaterials science. Polymer edition.
[11] R. Thull,et al. Oberflächenmodifikationen zur Verbesserung von Biokompatibilität und mechanischen Eigenschaften von orthopädischen Implantaten , 2003, Der Orthopäde.
[12] J. M. Kennedy,et al. Long-term compressive property durability of carbon fibre-reinforced polyetheretherketone composite in physiological saline. , 1996, Biomaterials.
[13] K. Schröder,et al. Plasma-induced chemical micropatterning for cell culturing applications: a brief review , 1999 .
[14] P. Schaffner,et al. Spezifische Bioaktivierung von Implantatoberflächen , 2000 .
[15] D. Puleo,et al. Osteoblast responses to orthopedic implant materials in vitro. , 1991, Journal of biomedical materials research.
[16] R. Bizios,et al. Surfaces modified with covalently-immobilized adhesive peptides affect fibroblast population motility. , 1996, Biomaterials.
[17] A. Schilling,et al. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. , 2001, Journal of biomedical materials research.
[18] Stanley A. Brown,et al. In vitro biocompatibility of polyetheretherketone and polysulfone composites. , 1990, Journal of biomedical materials research.
[19] O. Noiset,et al. Adhesion and growth of CaCo2 cells on surface-modified PEEK substrata , 2000, Journal of biomaterials science. Polymer edition.
[20] J. Westendorf,et al. Polyetheretherketone--cytotoxicity and mutagenicity in vitro. , 2002, Biomaterials.
[21] K. Schröder,et al. On the Applicability of Plasma Assisted Chemical Micropatterning to Different Polymeric Biomaterials , 2002 .
[22] Karsten Schröder,et al. Plasma-induced surface functionalization of polymeric biomaterials in ammonia plasma , 2001 .
[23] A. Rezania,et al. A probabilistic approach to measure the strength of bone cell adhesion to chemically modified surfaces , 2007, Annals of Biomedical Engineering.
[24] S. Cook,et al. Preliminary evaluation of titanium-coated PEEK dental implants. , 1995, The Journal of oral implantology.
[25] R. Tuan,et al. Testing of Skeletal Implant Surfaces With Human Fetal Osteoblasts , 2002, Clinical orthopaedics and related research.