Relationship between orientation factor of lead zirconate titanate nanowires and dielectric permittivity of nanocomposites

The relationship between the orientation of lead zirconate titanate (PZT) nanowires dispersed in nanocomposites and the resulting dielectric constants are quantified. The orientation of the PZT nanowires embedded in a polymer matrix is controlled by varying the draw ratio and subsequently quantified using Herman's Orientation Factor. Consequently, it is demonstrated that the dielectric constants of nanocomposites are improved by increasing the orientation factor of the PZT nanowires. This technique is proposed to improve the dielectric constant of the nanocomposites without the need for additional filler volume fraction since the nanocomposites are utilized in a wide range of high dielectric permittivity electronic components.

[1]  Ming-Jen Pan,et al.  High energy density nanocomposites based on surface-modified BaTiO(3) and a ferroelectric polymer. , 2009, ACS nano.

[2]  J. Robertson,et al.  High density carbon nanotube growth using a plasma pretreated catalyst , 2013 .

[3]  R. W. Schwartz,et al.  Prediction of effective permittivity of diphasic dielectrics using an equivalent capacitance model , 2008 .

[4]  Haixiong Tang,et al.  Nanocomposites with increased energy density through high aspect ratio PZT nanowires , 2011, Nanotechnology.

[5]  S. Zwaag,et al.  Dielectrophoretically structured piezoelectric composites with high aspect ratio piezoelectric particles inclusions , 2012 .

[6]  H. Sodano,et al.  High energy density nanocomposite capacitors using non-ferroelectric nanowires , 2013 .

[7]  H. Rietschel,et al.  HIGH DIELECTRIC CONSTANT AND TUNABILITY OF EPITAXIAL SRTIO3 THIN FILM CAPACITORS , 1999 .

[8]  N. Setter,et al.  Large-scale fabrication of titanium-rich perovskite PZT submicro/nano wires and their electromechanical properties , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[9]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .

[10]  S. Sushanth Kumar,et al.  Polyacrylonitrile Single‐Walled Carbon Nanotube Composite Fibers , 2004 .

[11]  I. M. Ward,et al.  Structure and properties of oriented polymers , 1975 .

[12]  Robert C. Davis,et al.  Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. , 2008, Nature nanotechnology.

[13]  Haixiong Tang,et al.  Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. , 2013, Nano letters.

[14]  R. Samuels Structured polymer properties: The identification, interpretation, and application of crystalline polymer structure , 1974 .

[15]  C. Randall,et al.  Polyethylene nanocomposite dielectrics: Implications of nanofiller orientation on high field properties and energy storage , 2011 .

[16]  Larry D. Smith,et al.  Power distribution system design methodology and capacitor selection for modern CMOS technology , 1999 .

[17]  Clive A. Randall,et al.  Dielectric properties of dielectrophoretically assembled particulate-polymer composites , 1998 .

[18]  Barbara Stadlober,et al.  Low‐Voltage Organic Thin‐Film Transistors with High‐k Nanocomposite Gate Dielectrics for Flexible Electronics and Optothermal Sensors , 2007 .

[19]  Haixiong Tang,et al.  Synthesis of High Aspect Ratio BaTiO3 Nanowires for High Energy Density Nanocomposite Capacitors , 2013 .

[20]  W. A. Groen,et al.  Improving the d33 and g33 properties of 0-3 piezoelectric composites by dielectrophoresis , 2010 .

[21]  R. W. Schwartz,et al.  Prediction of Effective Permittivity of Diphasic Dielectrics as a Function of Frequency , 2009, IEEE Transactions on Dielectrics and Electrical Insulation.

[22]  High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A=Ba, Sr, Ca; B=Nb, Ta, Sb) , 2002, cond-mat/0209015.

[23]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[24]  John Alexander,et al.  Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform. , 2006, Biomaterials.

[25]  R. Whatmore,et al.  Structure modification of 0–3 piezoelectric ceramic/polymer composites through dielectrophoresis , 2005 .

[26]  Clive A. Randall,et al.  High field dielectric properties of anisotropic polymer-ceramic composites , 2008 .

[27]  Sang Il Seok,et al.  Nanocomposites of Ferroelectric Polymers with TiO2 Nanoparticles Exhibiting Significantly Enhanced Electrical Energy Density , 2009 .

[28]  K. Hata,et al.  Carbon Nanotubes with Temperature‐Invariant Creep and Creep‐Recovery from −190 to 970 °C , 2011, Advanced materials.

[29]  Henry A. Sodano,et al.  The effect of particle aspect ratio on the electroelastic properties of piezoelectric nanocomposites , 2010 .

[30]  David G Simpson,et al.  Measuring fiber alignment in electrospun scaffolds: a user's guide to the 2D fast Fourier transform approach , 2008, Journal of biomaterials science. Polymer edition.

[31]  Yirong Lin,et al.  Enhanced Energy Storage in Nanocomposite Capacitors through Aligned PZT Nanowires by Uniaxial Strain Assembly , 2012 .

[32]  Younan Xia,et al.  Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties. , 2009, ACS nano.

[33]  Ari Henrik Sihvola,et al.  Studies of mixing formulae in the complex plane , 1991, IEEE Trans. Geosci. Remote. Sens..