Intrinsic Non-stationary Covariance Function for Climate Modeling

Designing a covariance function that represents the underlying correlation is a crucial step in modeling complex natural systems, such as climate models. Geospatial datasets at a global scale usually suffer from non-stationarity and non-uniformly smooth spatial boundaries. A Gaussian process regression using a non-stationary covariance function has shown promise for this task, as this covariance function adapts to the variable correlation structure of the underlying distribution. In this paper, we generalize the non-stationary covariance function to address the aforementioned global scale geospatial issues. We define this generalized covariance function as an intrinsic non-stationary covariance function, because it uses intrinsic statistics of the symmetric positive definite matrices to represent the characteristic length scale and, thereby, models the local stochastic process. Experiments on a synthetic and real dataset of relative sea level changes across the world demonstrate improvements in the error metrics for the regression estimates using our newly proposed approach.

[1]  Mark J. Schervish,et al.  Nonstationary Covariance Functions for Gaussian Process Regression , 2003, NIPS.

[2]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[3]  Rachid Deriche,et al.  Statistics on the Manifold of Multivariate Normal Distributions: Theory and Application to Diffusion Tensor MRI Processing , 2006, Journal of Mathematical Imaging and Vision.

[4]  Neil D. Lawrence,et al.  Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.

[5]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[6]  S. Jevrejeva,et al.  New Data Systems and Products at the Permanent Service for Mean Sea Level , 2013 .

[7]  David Higdon,et al.  Non-Stationary Spatial Modeling , 2022, 2212.08043.

[8]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[9]  Patrick D. Nunn,et al.  Sea Level Change , 2019, Encyclopedia of Ocean Sciences.

[10]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[11]  J. Andrew Royle,et al.  Multiresolution models for nonstationary spatial covariance functions , 2002 .

[12]  R. Kopp Does the mid‐Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability? , 2013 .

[13]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[14]  F. Lindgren,et al.  Non-stationary Spatial Modelling with Applications to Spatial Prediction of Precipitation , 2013, 1306.0408.

[15]  R. Kopp,et al.  Probabilistic reanalysis of twentieth-century sea-level rise , 2015, Nature.

[16]  B. Matérn Spatial variation : Stochastic models and their application to some problems in forest surveys and other sampling investigations , 1960 .

[17]  J. M. Oller,et al.  AN EXPLICIT SOLUTION OF INFORMATION GEODESIC EQUATIONS FOR THE MULTIVARIATE NORMAL MODEL , 1991 .

[18]  Wolfram Burgard,et al.  Nonstationary Gaussian Process Regression Using Point Estimates of Local Smoothness , 2008, ECML/PKDD.

[19]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .