Weak Maps and Stabilizers of Classes of Matroids
暂无分享,去创建一个
Geoff Whittle | James Oxley | Dirk Vertigan | Jim Geelen | D. Vertigan | J. Geelen | J. Oxley | G. Whittle
[1] James G. Oxley,et al. On Weak Maps of Ternary Matroids , 1998, Eur. J. Comb..
[2] James G. Oxley,et al. A Note on the Non-spanning Circuits of a Matroid , 1991, Eur. J. Comb..
[3] Jeff Kahn,et al. On the Uniqueness of Matroid Representations Over GF(4) , 1988 .
[4] R. Bixby. A simple theorem on 3-connectivity , 1982 .
[5] H. Crapo. Single-element extensions of matroids , 1965 .
[6] Paul D. Seymour,et al. Decomposition of regular matroids , 1980, J. Comb. Theory, Ser. B.
[7] James G. Oxley,et al. On Inequivalent Representations of Matroids over Finite Fields , 1996, J. Comb. Theory B.
[8] W. T. Tutte. A homotopy theorem for matroids. II , 1958 .
[9] Bogdan Oporowski,et al. Unavoidable Minors of Large 3-Connected Matroids , 1997, J. Comb. Theory, Ser. B.
[10] James Oxley,et al. On inequivalent representations of matroids , 1996 .
[11] Charles Semple,et al. Partial Fields and Matroid Representation , 1996 .
[12] Henry Crapo,et al. On relative position in extensions of combinatorial geometries , 1988, J. Comb. Theory, Ser. B.
[13] W. T. Tutte. Connectivity in Matroids , 1966, Canadian Journal of Mathematics.
[14] Geoff Whittle,et al. ON MATROIDS REPRESENTABLE OVER GF(3) AND OTHER FIELDS , 1997 .
[15] Geoff Whittle,et al. A Characterization of the Matroids Representable over GF(3) and the Rationals , 1995, J. Comb. Theory, Ser. B.
[16] Geoff Whittle,et al. Stabilizers of Classes of Representable Matroids , 1999, J. Comb. Theory, Ser. B.
[17] Robert E. Bixby,et al. On Reid's characterization of the ternary matroids , 1979, J. Comb. Theory, Ser. B.
[18] D. Lucas,et al. Weak maps of combinatorial geometries , 1975 .
[19] Paul D. Seymour,et al. Matroid representation over GF(3) , 1979, J. Comb. Theory, Ser. B.
[20] James G. Oxley,et al. Matroid theory , 1992 .
[21] Bert Gerards,et al. The Excluded Minors for GF(4)-Representable Matroids , 1997, J. Comb. Theory, Ser. B.