Cram$\acute{\text{e}}$r–Rao Bound for Constrained Parameter Estimation Using Lehmann-Unbiasedness
暂无分享,去创建一个
[1] Alfred O. Hero,et al. Nonlinear Unmixing of Hyperspectral Images: Models and Algorithms , 2013, IEEE Signal Processing Magazine.
[2] Robert Boorstyn,et al. Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.
[3] J. Aitchison,et al. Maximum-Likelihood Estimation of Parameters Subject to Restraints , 1958 .
[4] Alfred O. Hero,et al. On the application of Cramer-Rao type lower bounds for constrained estimation , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.
[5] Alle-Jan van der Veen,et al. Effects of Parametric Constraints on the CRLB in Gain and Phase Estimation Problems , 2006, IEEE Signal Processing Letters.
[6] M. Crowder. On constrained maximum likelihood estimation with non-i.i.d. observations , 1984 .
[7] Jürgen Pilz,et al. Minimax linear regression estimation with symmetric parameter restrictions , 1986 .
[8] H. Cramér. A contribution to the theory of statistical estimation , 1946 .
[9] Yonina C. Eldar,et al. On the Constrained CramÉr–Rao Bound With a Singular Fisher Information Matrix , 2009, IEEE Signal Processing Letters.
[10] Joseph Tabrikian,et al. Bayesian Estimation in the Presence of Deterministic Nuisance Parameters—Part I: Performance Bounds , 2015, IEEE Transactions on Signal Processing.
[11] Venkatesh Saligrama,et al. On the Non-Existence of Unbiased Estimators in Constrained Estimation Problems , 2018, IEEE Transactions on Information Theory.
[12] B. C. Ng,et al. On the Cramer-Rao bound under parametric constraints , 1998, IEEE Signal Processing Letters.
[13] Lang Tong,et al. Joint Frequency and Phasor Estimation Under the KCL Constraint , 2013, IEEE Signal Processing Letters.
[14] Steven Kay,et al. Unbiased estimation of the phase of a sinusoid , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[15] Joseph Tabrikian,et al. Performance bounds for constrained parameter estimation , 2012, 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM).
[16] Joseph Tabrikian,et al. Non-Bayesian Periodic Cramér-Rao Bound , 2013, IEEE Transactions on Signal Processing.
[17] Yonina C. Eldar,et al. The Cramér-Rao Bound for Estimating a Sparse Parameter Vector , 2010, IEEE Transactions on Signal Processing.
[18] Alfred O. Hero,et al. Exploring estimator bias-variance tradeoffs using the uniform CR bound , 1996, IEEE Trans. Signal Process..
[19] G. Styan,et al. Some further matrix extensions of the Cauchy-Schwarz and Kantorovich inequalities, with some statistical applications , 1996 .
[20] Fulvio Gini,et al. The Constrained Misspecified Cramér–Rao Bound , 2016, IEEE Signal Processing Letters.
[21] C. D. Meyer,et al. Generalized inverses of linear transformations , 1979 .
[22] Joseph Tabrikian,et al. General Classes of Performance Lower Bounds for Parameter Estimation—Part I: Non-Bayesian Bounds for Unbiased Estimators , 2010, IEEE Transactions on Information Theory.
[23] H. Hendriks. A Crame´r-Rao–type lower bound for estimators with values in a manifold , 1991 .
[24] Alfred O. Hero,et al. Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.
[25] Bhaskar D. Rao,et al. Cramer-Rao lower bound for constrained complex parameters , 2004, IEEE Signal Processing Letters.
[26] T. Moon,et al. Mathematical Methods and Algorithms for Signal Processing , 1999 .
[27] Brian M. Sadler,et al. Bounds on bearing and symbol estimation with side information , 2001, IEEE Trans. Signal Process..
[28] Nicolas Boumal,et al. On Intrinsic Cramér-Rao Bounds for Riemannian Submanifolds and Quotient Manifolds , 2013, IEEE Transactions on Signal Processing.
[29] Brian M. Sadler,et al. The Constrained CramÉr–Rao Bound From the Perspective of Fitting a Model , 2007, IEEE Signal Processing Letters.
[30] Zhou Jianxiong,et al. A New Derivation of Constrained Cramér–Rao Bound Via Norm Minimization , 2011, IEEE Transactions on Signal Processing.
[31] Eric Chaumette,et al. Versatility of constrained CRB for system analysis and design , 2014, IEEE Transactions on Aerospace and Electronic Systems.
[32] Kaare Brandt Petersen,et al. The Matrix Cookbook , 2006 .
[33] S. D. Silvey,et al. The Lagrangian Multiplier Test , 1959 .
[34] Felix Famoye,et al. Improving Efficiency by Shrinkage , 1999, Technometrics.
[35] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[36] H. V. Trees,et al. Exploring Estimator BiasVariance Tradeoffs Using the Uniform CR Bound , 2007 .
[37] Thomas L. Marzetta,et al. A simple derivation of the constrained multiple parameter Cramer-Rao bound , 1993, IEEE Trans. Signal Process..
[38] E. Lehmann. A General Concept of Unbiasedness , 1951 .
[39] H. V. Trees,et al. Covariance, Subspace, and Intrinsic CramrRao Bounds , 2007 .
[40] Yossef Steinberg,et al. Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.
[41] C. R. Rao,et al. Pattern recognition based on scale invariant discriminant functions , 1988, Inf. Sci..
[42] Sheng Chen,et al. Regularized orthogonal least squares algorithm for constructing radial basis function networks , 1996 .
[43] T. Moore. A Theory of Cramer-Rao Bounds for Constrained Parametric Models , 2010 .
[44] Joseph Tabrikian,et al. Limitations of Constrained CRB and an Alternative Bound , 2018, 2018 IEEE Statistical Signal Processing Workshop (SSP).
[45] Eric Chaumette,et al. New Results on Deterministic Cramér–Rao Bounds for Real and Complex Parameters , 2012, IEEE Transactions on Signal Processing.
[46] Yonina C. Eldar. Universal Weighted MSE Improvement of the Least-Squares Estimator , 2008, IEEE Transactions on Signal Processing.
[47] S. Kay. Fundamentals of statistical signal processing: estimation theory , 1993 .
[48] G. Golub,et al. Quadratically constrained least squares and quadratic problems , 1991 .
[49] Joseph Tabrikian,et al. On the limitations of Barankin type bounds for MLE threshold prediction , 2015, Signal Process..
[50] Anil V. Rao,et al. Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .
[51] Michael Elad,et al. Closed-Form MMSE Estimation for Signal Denoising Under Sparse Representation Modeling Over a Unitary Dictionary , 2010, IEEE Transactions on Signal Processing.
[52] Ami Wiesel,et al. Maximum likelihood estimation in linear models with a Gaussian model matrix , 2006, IEEE Signal Processing Letters.
[53] Gabriela Cohen Freue,et al. The Constrained Maximum Likelihood Estimation For Parameters Arising From Partially Identified Models , 2016, 1607.08826.
[54] S.T. Smith,et al. Covariance, subspace, and intrinsic Crame/spl acute/r-Rao bounds , 2005, IEEE Transactions on Signal Processing.
[55] Yonina C. Eldar. MSE Bounds With Affine Bias Dominating the CramÉr–Rao Bound , 2008, IEEE Transactions on Signal Processing.
[56] Michael R. Osborne,et al. Scoring with constraints , 2000, The ANZIAM Journal.
[57] Lang Tong,et al. Estimation After Parameter Selection: Performance Analysis and Estimation Methods , 2015, IEEE Transactions on Signal Processing.
[58] Bin Yang,et al. MMSE estimation in a linear signal model with ellipsoidal constraints , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.
[59] João M. F. Xavier,et al. Intrinsic variance lower bound (IVLB): an extension of the Cramer-Rao bound to Riemannian manifolds , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[60] Yonina C. Eldar,et al. Robust mean-squared error estimation in the presence of model uncertainties , 2005, IEEE Transactions on Signal Processing.
[61] Eric Chaumette,et al. A constrained hybrid Cramér-Rao bound for parameter estimation , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[62] Robinson Piramuthu,et al. Minimax Emission Computed Tomography using High-Resolution Anatomical Side Information and B-Spline Models , 1999, IEEE Trans. Inf. Theory.
[63] Joseph Tabrikian,et al. Cyclic Barankin-Type Bounds for Non-Bayesian Periodic Parameter Estimation , 2014, IEEE Transactions on Signal Processing.
[64] D. Rajan. Probability, Random Variables, and Stochastic Processes , 2017 .
[65] Petre Stoica,et al. Linear Regression Constrained to a Ball, , 2001, Digit. Signal Process..
[66] Brian M. Sadler,et al. Maximum-Likelihood Estimation, the CramÉr–Rao Bound, and the Method of Scoring With Parameter Constraints , 2008, IEEE Transactions on Signal Processing.