Toward Industrial Exploitation of THz Frequencies: Integration of SiGe MMICs in Silicon-Micromachined Waveguide Systems

A new integration concept for terahertz (THz) systems is presented in this article, wherein patterned silicon-on-insulator wafers form all DC, IF, and RF networks in a homogeneous medium, in contrast to existing solutions. Using this concept, silicon-micromachined waveguides are combined with silicon germanium (SiGe) monolithic microwave integrated circuits (MMICs) for the first time. All features of the integration platform lie in the waveguide's H-plane. Heterogeneous integration of SiGe chips is achieved using a novel in-line H-plane transition. As an initial step toward complete systems, we outline the design, fabrication, and assembly of back-to-back transition structures, for use at <italic>D</italic>-band frequencies (110–170 GHz). Special focus is given to the industrial compatibility of all components, fabrication, and assembly processes, with an eye on the future commercialization of THz systems. Prototype devices are assembled via two distinct processes, one of which utilizes semiautomated die-bonding tools. Positional and orientation tolerances for each process are quantified. An accuracy of <inline-formula><tex-math notation="LaTeX">$\pm \text{3.5}\; \mu \text{m}$</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">$\pm \text{1.5} ^\circ$</tex-math></inline-formula> is achieved. Measured <inline-formula><tex-math notation="LaTeX">$S$</tex-math></inline-formula>-parameters for each device are presented. The insertion loss of a single-ended transition, largely due to MMIC substrate losses, is 4.2–5.5 dB, with a bandwidth of 25 GHz (135–160 GHz). Return loss is in excess of 5 dB. Measurements confirm the excellent repeatability of the fabrication and assembly processes and, thus, their suitability for use in high-volume applications. The proposed integration concept is highly scalable, permitting its usage far into the THz frequency spectrum. This article represents the first stage in the shift to highly compact, low-cost, volume-manufacturable THz waveguide systems.

[1]  J. Mäkinen Chapter Seven – Thick-Film SOI Wafers: Preparation and Properties , 2010 .

[2]  Johann W. Odendaal,et al.  Coaxial End-Launched and Microstrip to Partial $H$-Plane Waveguide Transitions , 2015, IEEE Transactions on Microwave Theory and Techniques.

[3]  Hideaki Matsuzaki,et al.  Sub-Millimeter and Terahertz-Wave Packaging for Large Chip-Width MMICs , 2016, IEEE Microwave and Wireless Components Letters.

[4]  J. Giboz,et al.  Microinjection molding of thermoplastic polymers: a review , 2007 .

[5]  Goutam Chattopadhyay,et al.  Micromachined Packaging for Terahertz Systems , 2017, Proceedings of the IEEE.

[6]  Y. Huang,et al.  Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications , 2016 .

[7]  S. Hara,et al.  300-GHz CMOS Receiver Module with WR-3.4 Waveguide Interface , 2018, 2018 48th European Microwave Conference (EuMC).

[8]  Kenichi Okada,et al.  300-GHz. 100-Gb/s InP-HEMT Wireless Transceiver Using a 300-GHz Fundamental Mixer , 2018, 2018 IEEE/MTT-S International Microwave Symposium - IMS.

[9]  Ho-Jin Song,et al.  Packages for Terahertz Electronics , 2017, Proceedings of the IEEE.

[10]  Philipp Hillger,et al.  Terahertz Imaging and Sensing Applications With Silicon-Based Technologies , 2019, IEEE Transactions on Terahertz Science and Technology.

[11]  Munkyo Seo,et al.  THz MMICs based on InP HBT Technology , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[12]  M. Schroter,et al.  SiGe heterojunction bipolar transistor technology for sub-mm-wave electronics — state-of-the-art and future prospects , 2018, 2018 IEEE 18th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF).

[13]  Richard Lai,et al.  Miniature packaging concept for LNAs in the 200–300 GHz range , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[14]  U. Shah,et al.  Compact Silicon-Micromachined Wideband 220–330-GHz Turnstile Orthomode Transducer , 2019, IEEE Transactions on Terahertz Science and Technology.

[15]  C. Jung-Kubiak,et al.  A Silicon Micromachined Eight-Pixel Transceiver Array for Submillimeter-Wave Radar , 2015, IEEE Transactions on Terahertz Science and Technology.

[16]  Arnulf Leuther,et al.  Towards MMIC-Based 300GHz Indoor Wireless Communication Systems , 2015, IEICE Trans. Electron..

[17]  Bernd Heinemann,et al.  Si/SiGe:C and InP/GaAsSb Heterojunction Bipolar Transistors for THz Applications , 2017, Proceedings of the IEEE.

[18]  Kosuke Katayama,et al.  A 300 GHz CMOS Transmitter With 32-QAM 17.5 Gb/s/ch Capability Over Six Channels , 2016, IEEE Journal of Solid-State Circuits.

[19]  Fran Cverna,et al.  ASM ready reference : thermal properties of metals , 2002 .

[20]  Jeffrey L. Hesler,et al.  WM380 (675–700 GHz) Bandpass Filters in Milled, Split-Block Construction , 2018, IEEE Transactions on Terahertz Science and Technology.

[21]  V. Radisic,et al.  WR1.5 Silicon Micromachined Waveguide Components and Active Circuit Integration Methodology , 2012, IEEE Transactions on Microwave Theory and Techniques.

[22]  Joachim Oberhammer,et al.  A Very Low Loss 220–325 GHz Silicon Micromachined Waveguide Technology , 2018, IEEE Transactions on Terahertz Science and Technology.

[23]  B. Heinemann,et al.  A 16-QAM 100-Gb/s 1-M Wireless Link With an EVM of 17% at 230 GHz in an SiGe Technology , 2019, IEEE Microwave and Wireless Components Letters.

[24]  Corrado Carta,et al.  A Low-Power SiGe BiCMOS 190-GHz Transceiver Chipset With Demonstrated Data Rates up to 50 Gbit/s Using On-Chip Antennas , 2017, IEEE Transactions on Microwave Theory and Techniques.

[25]  Ho-Jin Song,et al.  Design and Analysis of LTCC-Integrated Planar Microstrip-to-Waveguide Transition at 300 GHz , 2016, IEEE Transactions on Microwave Theory and Techniques.

[26]  Tadao Nagatsuma,et al.  Corporate-Feed Slotted Waveguide Array Antenna in the 350-GHz Band by Silicon Process , 2017, IEEE Transactions on Antennas and Propagation.

[27]  O. Ambacher,et al.  A 243 GHz LNA Module Based on mHEMT MMICs With Integrated Waveguide Transitions , 2013, IEEE Microwave and Wireless Components Letters.

[28]  A. Macor,et al.  Monolithic metal-coated plastic components for mm-wave applications , 2014, 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[29]  H. Zirath,et al.  Metallic 3-D Printed Rectangular Waveguides for Millimeter-Wave Applications , 2016, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[30]  Pekka Pursula,et al.  Micromachining integration platform for sub-terahertz and terahertz systems , 2018, International Journal of Microwave and Wireless Technologies.

[31]  Franz Dielacher,et al.  Silicon Taper Based $D$ -Band Chip to Waveguide Interconnect for Millimeter-Wave Systems , 2017, IEEE Microwave and Wireless Components Letters.

[32]  Xiang Yi,et al.  Filling the Gap: Silicon Terahertz Integrated Circuits Offer Our Best Bet , 2019, IEEE Microwave Magazine.

[33]  Bo Liu,et al.  WR-3 Waveguide Bandpass Filters Fabricated Using High Precision CNC Machining and SU-8 Photoresist Technology , 2018, IEEE Transactions on Terahertz Science and Technology.

[34]  W.R. Deal,et al.  A 340–380 GHz Integrated CB-CPW-to-Waveguide Transition for Sub Millimeter-Wave MMIC Packaging , 2009, IEEE Microwave and Wireless Components Letters.

[35]  Yunchi Zhang,et al.  A Waveguide to Microstrip Inline Transition With Very Simple Modular Assembly , 2010, IEEE Microwave and Wireless Components Letters.

[36]  Munkyo Seo,et al.  InP HBT Technologies for THz Integrated Circuits , 2017, Proceedings of the IEEE.

[37]  A. R. Kerr,et al.  Loss of Gold Plated Waveguides at 210-280 GHz , 2009 .

[38]  Daniel M. Mittleman,et al.  Perspective: Terahertz science and technology , 2017 .

[39]  Joachim Oberhammer,et al.  An Ultra Low-Loss Silicon-Micromachined Waveguide Filter for D-Band Telecommunication Applications , 2018, 2018 IEEE/MTT-S International Microwave Symposium - IMS.

[40]  Yi Wang,et al.  WR-3 Band Waveguides and Filters Fabricated Using SU8 Photoresist Micromachining Technology , 2012, IEEE Transactions on Terahertz Science and Technology.

[41]  H. Zirath,et al.  Novel Low-Loss Millimeter-Wave Transition From Waveguide-to-Microstrip Line Suitable for MMIC Integration and Packaging , 2017, IEEE Microwave and Wireless Components Letters.

[42]  O. Zmeskal,et al.  Study of the thermal properties of filaments for 3D printing , 2016 .

[43]  V. Radisic,et al.  THz Monolithic Integrated Circuits Using InP High Electron Mobility Transistors , 2011, IEEE Transactions on Terahertz Science and Technology.

[44]  T. Kazior Beyond CMOS: heterogeneous integration of III–V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  Herbert Zirath,et al.  A 140 GHz Transmitter with an Integrated Chip-to-Waveguide Transition Using 130nm SiGe BiCMOS Process , 2018, 2018 Asia-Pacific Microwave Conference (APMC).

[46]  P. Reynaert,et al.  A 400-GHz 28-nm TX and RX With Chip-to-Waveguide Transitions Used in Fully Integrated Lensless Imaging System , 2019, IEEE Transactions on Terahertz Science and Technology.

[47]  U. Shah,et al.  Investigation of Fabrication Accuracy and Repeatability of High- $Q$ Silicon-Micromachined Narrowband Sub-THz Waveguide Filters , 2019, IEEE Transactions on Microwave Theory and Techniques.

[48]  W. Deal,et al.  First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process , 2015, IEEE Electron Device Letters.

[49]  T. Zwick,et al.  Design and measurement of matched wire bond and flip chip interconnects for D-band system-in-package applications , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[50]  K. Aufinger,et al.  SiGe HBT and BiCMOS process integration optimization within the DOTSEVEN project , 2015, 2015 IEEE Bipolar/BiCMOS Circuits and Technology Meeting - BCTM.

[51]  Herbert Zirath,et al.  A $D$-Band 48-Gbit/s 64-QAM/QPSK Direct-Conversion I/Q Transceiver Chipset , 2016, IEEE Transactions on Microwave Theory and Techniques.

[52]  Tadao Nagatsuma,et al.  Terahertz integrated electronic and hybrid electronic–photonic systems , 2018, Nature Electronics.

[53]  Thomas Schneider,et al.  Link Budget Analysis for Terahertz Fixed Wireless Links , 2012, IEEE Transactions on Terahertz Science and Technology.

[54]  V. Radisic,et al.  Power Amplification at 0.65 THz Using InP HEMTs , 2012, IEEE Transactions on Microwave Theory and Techniques.

[55]  Robert M. Weikle,et al.  Inexpensive Receiver Components for Millimeter and Submillimeter Wavelengths , 1997 .

[56]  Goutam Chattopadhyay,et al.  A 500–750 GHz RF MEMS Waveguide Switch , 2017, IEEE Transactions on Terahertz Science and Technology.

[57]  C. Wipf,et al.  SiGe HBT with fx/fmax of 505 GHz/720 GHz , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[58]  J. Oberhammer,et al.  Electrochemically Assisted Maskless Selective Removal of Metal Layers for Three-Dimensional Micromachined SOI RF MEMS Transmission Lines and Devices , 2011, Journal of Microelectromechanical Systems.

[59]  Thomas Zwick,et al.  Packaging Solution Based on Low-Temperature Cofired Ceramic Technology for Frequencies Beyond 100 GHz , 2019, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[60]  Ho-Jin Song,et al.  50-Gb/s Direct Conversion QPSK Modulator and Demodulator MMICs for Terahertz Communications at 300 GHz , 2014, IEEE Transactions on Microwave Theory and Techniques.

[61]  Kenichi Okada,et al.  A 120Gb/s 16QAM CMOS millimeter-wave wireless transceiver , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[62]  Bernd Heinemann,et al.  SiGe HBT Technology: Future Trends and TCAD-Based Roadmap , 2017, Proceedings of the IEEE.

[63]  Cheng Wang,et al.  0.34-THz Wireless Link Based on High-Order Modulation for Future Wireless Local Area Network Applications , 2014, IEEE Transactions on Terahertz Science and Technology.

[64]  Viktor Krozer,et al.  Manufacturable Low-Cost Flip-Chip Mounting Technology for 300–500-GHz Assemblies , 2017, IEEE Transactions on Components, Packaging and Manufacturing Technology.