Using contextual information for image retrieval

Visual information retrieval presents many challenges for the computer vision community. The terabytes of visual information stored in digital image and video libraries will remain inaccessible if the problems of indexing and retrieval are not addressed. We present techniques for content based image retrieval using higher level contextual information. The content is represented and queried using attributed relational graphs, with colour attributes and relaxation labelling techniques. We present retrieval examples using both synthetic and real images of national flags. This, although a simplistic problem, highlights the shortcomings and difficulties associated with content based retrieval systems.

[1]  Dorin Comaniciu,et al.  Robust analysis of feature spaces: color image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  Alan F. Smeaton,et al.  Experiments on using semantic distances between words in image caption retrieval , 1996, SIGIR '96.

[3]  Shih-Fu Chang,et al.  VideoQ: an automated content based video search system using visual cues , 1997, MULTIMEDIA '97.

[4]  John Murphy,et al.  Using WordNet as a Knowledge Base for Measuring Semantic Similarity between Words , 1994 .

[5]  W. Bruce Croft,et al.  A language modeling approach to information retrieval , 1998, SIGIR '98.

[6]  George A. Miller,et al.  Introduction to WordNet: An On-line Lexical Database , 1990 .

[7]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[8]  Serge J. Belongie,et al.  Region-based image querying , 1997, 1997 Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries.

[9]  Thorsten Hermes,et al.  On Video Retrieval: Content Analysis by ImageMinerTM , 1998 .

[10]  Josef Kittler,et al.  Region-Based Object Recognition: Pruning Multiple Representations and Hypotheses , 2000, BMVC.

[11]  Clement T. Yu,et al.  Using semantic contents and WordNet in image retrieval , 1997, SIGIR '97.

[12]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[13]  Debra T. Burhans,et al.  Visual Semantics: Extracting Visual information from Text Accompanying Pictures , 1994, AAAI.

[14]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Julio Gonzalo,et al.  Indexing with WordNet synsets can improve text retrieval , 1998, WordNet@ACL/COLING.

[16]  Josef Kittler,et al.  A region-based image database system using colour and texture , 1999, Pattern Recognit. Lett..