Molecular structure and stereoelectronic properties of herbicide sulphonylureas.

MO theoretical calculations were used with the aim to investigate the electronic properties of a number of sulphonylureas 1-8 which are employed as antifeedants. Quantum chemical descriptors [electron density, molecular electrostatic potential (MEP), the topology of frontier orbitals and reactivity index] were determined for these compounds, aimed both to obtain a deeper insight in their mechanism of action and to correlate these properties with their activity as inhibitors of ALS synthase.

[1]  R. Sheridan,et al.  The active site electrostatic potential of human carbonic anhydrase , 1981 .

[2]  D. Penner,et al.  Magnitude of Imazethapyr Resistance of Corn (Zea mays) Hybrids with Altered Acetolactate Synthase , 1995, Weed Science.

[3]  J. Murray,et al.  A COMPUTATIONAL STUDY OF THE STRUCTURES AND ELECTROSTATIC POTENTIALS OF SOME AZINES AND NITROAZINES , 1989 .

[4]  Robert G. Parr,et al.  Activation hardness: new index for describing the orientation of electrophilic aromatic substitution , 1990 .

[5]  M. Karelson,et al.  Quantum-Chemical Descriptors in QSAR/QSPR Studies. , 1996, Chemical reviews.

[6]  H. Strek Fate of chlorsulfuron in the environment. 1. Laboratory evaluations , 1998 .

[7]  A. Brown,et al.  Fate of rimsulfuron in the environment , 1993 .

[8]  Ian Fleming,et al.  Frontier Orbitals and Organic Chemical Reactions , 1977 .

[9]  O. Kikuchi Reaction potential map analysis of electrophilic aromatic substitution reactions , 1986 .

[10]  Susumu Shimoda,et al.  QSAR of Fungicidal Δ3‐1,2,4‐Thiadiazolines. Reactivity‐Activity Correlation of SH‐Inhibitors , 1993 .

[11]  W. Faust Explosive Molecular Ionic Crystals , 1989, Science.

[12]  F Durant,et al.  Molecular structure and stereoelectronic properties of sarmazenil--a weak inverse agonist at the omega modulatory sites (benzodiazepine receptors): comparison with bretazenil and flumazenil. , 1998, Bioorganic & medicinal chemistry.

[13]  J. Reboul,et al.  The molecular electrostatic potential and drug design , 1992 .

[14]  J. Vargo,et al.  Hydrolysis of prosulfuron at pH 5: evidence for a resonance‐stabilized triazine cleavage product , 1997 .

[15]  J. Murray,et al.  A comparative analysis of the electrostatic potentials of some structural analogues of 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin and of related aromatic systems , 1990 .

[16]  J. Murray,et al.  Calculated structures and electrostatic potentials of some 1,4-dioxazines and 1,4-dioxadiazines , 1988 .

[17]  Rainer Franke,et al.  Theoretical drug design methods , 1984 .

[18]  G. Chang,et al.  An internal-coordinate Monte Carlo method for searching conformational space , 1989 .

[19]  M. Guttieri,et al.  Diverse Mutations in the Acetolactate Synthase Gene Confer Chlorsulfuron Resistance in Kochia (Kochia scoparia) Biotypes , 1995, Weed Science.

[20]  A. Bhattacharjee,et al.  Analysis of stereoelectronic properties of camptothecin analogues in relation to biological activity. , 2000, Bioorganic & medicinal chemistry.

[21]  Jacopo Tomasi,et al.  Molecular SCF Calculations for the Ground State of Some Three‐Membered Ring Molecules: (CH2)3, (CH2)2NH, (CH2)2NH2+, (CH2)2O, (CH2)2S, (CH)2CH2, and N2CH2 , 1970 .

[22]  Michael J. S. Dewar,et al.  Evaluation of AM1 calculated proton affinities and deprotonation enthalpies , 1986 .

[23]  G. Náray‐Szabó Electrostatic isopotential maps for large biomolecules , 1979 .

[24]  G. Leroux,et al.  Inhibition of Plant Acetolactate Synthase by Nicosulfuron, Rimsulfuron, and Their Mixture DPX-79406 , 1994, Weed Science.

[25]  G. Náray‐Szabó Unusually large electrostatic field effect of the buried aspartate in serine proteinases: Source of catalytic power , 1983 .

[26]  K Tuppurainen,et al.  About the mutagenicity of chlorine-substituted furanones and halopropenals. A QSAR study using molecular orbital indices. , 1991, Mutation research.

[27]  Peter Politzer,et al.  Chemical Applications of Atomic and Molecular Electrostatic Potentials: "Reactivity, Structure, Scattering, And Energetics Of Organic, Inorganic, And Biological Systems" , 2013 .

[28]  J. Burdett,et al.  Band Gap and Stability of Solids , 1988 .

[29]  J. Murray,et al.  Electrostatic potentials of some dibenzo-p-dioxins in relation to their biological activities , 1987 .

[30]  C. Marucchini,et al.  Determination of N-(3-ethylsulfonyl-2-pyridinyl)-4,6-dimethoxy-2-pyridineamine in soil after treatment with rimsulfuron , 1997 .

[31]  G. Náray‐Szabó Electrostatic effect on catalytic rate enhancement in serine proteinases , 1982 .

[32]  Gustave K. Kohn,et al.  Pesticide synthesis through rational approaches , 1984 .

[33]  G. Levitt SULFONYLUREAS: NEW HIGH POTENCY HERBICIDES , 1983 .

[34]  Kenichi Fukui,et al.  Theory of Orientation and Stereoselection , 1975 .

[35]  G. Dive,et al.  Electrostatic potential maps at the quantum chemistry level of the active sites of the serine peptidases, alpha-chymotrypsin and subtilisin. , 1990, Journal of theoretical biology.

[36]  G. Chang,et al.  Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics , 1990 .

[37]  D. Majumdar,et al.  Molecular electrostatic potential: a tool for the prediction of the pharmacophoric pattern of drug molecules , 1992 .

[38]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .