The European carbon balance. Part 2: croplands

We estimated the long‐term carbon balance [net biome production (NBP)] of European (EU‐25) croplands and its component fluxes, over the last two decades. Net primary production (NPP) estimates, from different data sources ranged between 490 and 846 gC m−2 yr−1, and mostly reflect uncertainties in allocation, and in cropland area when using yield statistics. Inventories of soil C change over arable lands may be the most reliable source of information on NBP, but inventories lack full and harmonized coverage of EU‐25. From a compilation of inventories we infer a mean loss of soil C amounting to 17 g m−2 yr−1. In addition, three process‐based models, driven by historical climate and evolving agricultural technology, estimate a small sink of 15 g C m−2 yr−1 or a small source of 7.6 g C m−2 yr−1. Neither the soil C inventory data, nor the process model results support the previous European‐scale NBP estimate by Janssens and colleagues of a large soil C loss of 90 ± 50 gC m−2 yr−1. Discrepancy between measured and modeled NBP is caused by erosion which is not inventoried, and the burning of harvest residues which is not modeled. When correcting the inventory NBP for the erosion flux, and the modeled NBP for agricultural fire losses, the discrepancy is reduced, and cropland NBP ranges between −8.3 ± 13 and −13 ± 33 g C m−2 yr−1 from the mean of the models and inventories, respectively. The mean nitrous oxide (N2O) flux estimates ranges between 32 and 37 g C Eq m−2 yr−1, which nearly doubles the CO2 losses. European croplands act as small CH4 sink of 3.3 g C Eq m−2 yr−1. Considering ecosystem CO2, N2O and CH4 fluxes provides for the net greenhouse gas balance a net source of 42–47 g C Eq m−2 yr−1. Intensifying agriculture in Eastern Europe to the same level Western Europe amounts is expected to result in a near doubling of the N2O emissions in Eastern Europe. N2O emissions will then become the main source of concern for the impact of European agriculture on climate.

[1]  Markus Reichstein,et al.  The European carbon balance. Part 3: forests , 2010 .

[2]  M. Aubinet,et al.  Carbon sequestration by a crop over a 4-year sugar beet/winter wheat/seed potato/winter wheat rotation cycle , 2009 .

[3]  Marc Aubinet,et al.  Carbon balance assessment of a Belgian winter wheat crop (Triticum aestivum L.) , 2008 .

[4]  P. Ciais,et al.  Carbon and water balance of European croplands throughout the 20th century , 2008 .

[5]  Markus Kempen,et al.  Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe , 2008 .

[6]  Annette Freibauer,et al.  Observations and Status of Peatland Greenhouse Gas Emissions in Europe , 2008 .

[7]  Jo Smith,et al.  Greenhouse gas mitigation in agriculture , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[8]  Pete Smith,et al.  Climate change cannot be entirely responsible for soil carbon loss observed in England and Wales, 1978–2003 , 2007 .

[9]  J W Harden,et al.  The Impact of Agricultural Soil Erosion on the Global Carbon Cycle , 2007, Science.

[10]  Bas van Wesemael,et al.  Regional assessment of soil organic carbon changes under agriculture in Southern Belgium (1955-2005) , 2007 .

[11]  H. Haberl,et al.  Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems , 2007, Proceedings of the National Academy of Sciences.

[12]  P. Ciais,et al.  Horizontal displacement of carbon associated with agriculture and its impacts on atmospheric CO2 , 2007 .

[13]  Markus Reichstein,et al.  Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models , 2007 .

[14]  C. Müller,et al.  Modelling the role of agriculture for the 20th century global terrestrial carbon balance , 2007 .

[15]  Markus Reichstein,et al.  Mean annual GPP of Europe derived from its water balance , 2007 .

[16]  G. Hofman,et al.  Assessing causes of recent organic carbon losses from cropland soils by means of regional-scaled input balances for the case of Flanders (Belgium) , 2007, Nutrient Cycling in Agroecosystems.

[17]  R. Koeble,et al.  Computation of a European Agricultural Land Use Map – Statistical Approach and Validation , 2007 .

[18]  Véronique Antoni,et al.  Le stock de carbone dans les sols agricoles diminue , 2007 .

[19]  T. Tsujimori,et al.  Balancing the Global Carbon Budget , 2007 .

[20]  P. Ciais,et al.  Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly in Europe using seven models , 2007 .

[21]  P. Ciais,et al.  The impact of lateral carbon fluxes on the European carbon balance , 2006 .

[22]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[23]  E. Stehfest,et al.  N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions , 2006, Nutrient Cycling in Agroecosystems.

[24]  Integration of FLUXNET and Earth observation data with biogeochemical modelling , 2006 .

[25]  C. Wirth,et al.  Reconciling Carbon-cycle Concepts, Terminology, and Methods , 2006, Ecosystems.

[26]  Mark Rounsevell,et al.  Carbon sequestration potential in European croplands has been overestimated , 2005, Global change biology.

[27]  Robert J. A. Jones,et al.  Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080 , 2005, Global change biology.

[28]  B. Muys,et al.  Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990 , 2005, Global change biology.

[29]  J. Randerson,et al.  Global estimation of burned area using MODIS active fire observations , 2005 .

[30]  Edwin W. Pak,et al.  An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data , 2005 .

[31]  P. Ciais,et al.  Europe-wide reduction in primary productivity caused by the heat and drought in 2003 , 2005, Nature.

[32]  R. Lark,et al.  Carbon losses from all soils across England and Wales 1978–2003 , 2005, Nature.

[33]  Atul K. Jain,et al.  Modeling the effects of two different land cover change data sets on the carbon stocks of plants and soils in concert with CO2 and climate change , 2005 .

[34]  M. Rounsevell,et al.  Future scenarios of European agricultural land use: I. Estimating changes in crop productivity , 2005 .

[35]  T. D. Mitchell,et al.  An improved method of constructing a database of monthly climate observations and associated high‐resolution grids , 2005 .

[36]  Maosheng Zhao,et al.  Improvements of the MODIS terrestrial gross and net primary production global data set , 2005 .

[37]  P. Ciais,et al.  Including Croplands in a Global Biosphere Model: Methodology and Evaluation at Specific Sites , 2004 .

[38]  Philippe Ciais,et al.  Coupling the Soil-Vegetation-Atmosphere-Transfer Scheme ORCHIDEE to the agronomy model STICS to study the influence of croplands on the European carbon and water budgets , 2004 .

[39]  P. Ciais,et al.  The carbon budget of terrestrial ecosystems at country-scale – a European case study , 2004 .

[40]  Navin Ramankutty,et al.  Geographic distribution of major crops across the world , 2004 .

[41]  Annette Freibauer,et al.  Winter wheat carbon exchange in Thuringia, Germany , 2004 .

[42]  C. Spitters,et al.  Differences between spring wheat cultivars in early growth , 1986, Euphytica.

[43]  S. Gervois Les zones agricoles en Europe : évaluation de leur rôle sur les bilans d'eau et de carbone à l'échelle de l'Europe ; sensibilité de ces bilans aux changements environnementaux sur le vingtième siècle , 2004 .

[44]  Pete Smith,et al.  Europe's Terrestrial Biosphere Absorbs 7 to 12% of European Anthropogenic CO2 Emissions , 2003, Science.

[45]  G. Hofman,et al.  Estimates of carbon stock changes in Belgian cropland , 2003 .

[46]  A. Freibauer Regionalised inventory of biogenic greenhouse gas emissions from European agriculture , 2003 .

[47]  F. Makeschin,et al.  Der Einfluss von Acker- und Waldnutzung auf Boden und Vegetation – ein Zeitvergleich nach 27 Jahren , 2003, Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch.

[48]  S. T. Gower,et al.  A cross‐biome comparison of daily light use efficiency for gross primary production , 2003 .

[49]  L. M. Vleeshouwers,et al.  Carbon emission and sequestration by agricultural land use: a model study for Europe , 2002 .

[50]  Jouko Sippola,et al.  Monitoring of Finnish arable land: changes in soil quality between 1987 and 1998 , 2002 .

[51]  Eric Justes,et al.  STICS: a generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize , 2002 .

[52]  Ralf Weisse,et al.  Multi‐decadal atmospheric modeling for europe yields multi‐purpose data , 2001 .

[53]  W. Winiwarter,et al.  Uncertainties in greenhouse gas emission inventories — evaluation, comparability and implications , 2001 .

[54]  J. Goudriaan,et al.  Productivity of agro-ecosystems , 2001 .

[55]  Jörg Richter,et al.  C and N accumulation in arable soils of West Germany and its influence on the environment — Developments 1970 to 1998 , 2000 .

[56]  N. Ramankutty,et al.  Estimating historical changes in global land cover: Croplands from 1700 to 1992 , 1999 .

[57]  Nina Buchmann,et al.  Net CO2 and H2O fluxes of terrestrial ecosystems , 1999 .

[58]  A. Mather,et al.  The human drivers of global land cover change: the case of forests , 1998 .

[59]  Ep Heuvelink,et al.  Modelling biomass production and yield of horticultural crops: a review , 1998 .

[60]  M. Heimann,et al.  Carbon and water exchange of terrestrial systems , 1998 .

[61]  D. Jacob,et al.  Sensitivity studies with the regional climate model REMO , 1997 .

[62]  D. Powlson,et al.  Effect of land‐use change and methane mixing ratio on methane uptake from United Kingdom soil , 1995 .

[63]  P. Loveland,et al.  The carbon content of soil and its geographical distribution in Great Britain , 1995 .

[64]  R. Hay,et al.  Harvest index: a review of its use in plant breeding and crop physiology , 1995 .

[65]  J. Randerson,et al.  A model of global net ecosystem production , 1993 .

[66]  W. Parton,et al.  Dynamics of C, N, P and S in grassland soils: a model , 1988 .

[67]  Gu Lb,et al.  Soil carbon stocks and land use change : a meta analysis , 2022 .

[68]  S S I T C H,et al.  Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the Lpj Dynamic Global Vegetation Model , 2022 .