Stable planar vegetation stripe patterns on sloped terrain in dryland ecosystems
暂无分享,去创建一个
[1] Paul Carter,et al. Traveling Stripes in the Klausmeier Model of Vegetation Pattern Formation , 2018, SIAM J. Appl. Math..
[2] Björn Sandstede,et al. Stability of Traveling Pulses with Oscillatory Tails in the FitzHugh–Nagumo System , 2016, J. Nonlinear Sci..
[3] C. Klausmeier,et al. Regular and irregular patterns in semiarid vegetation , 1999, Science.
[4] I. Noy-Meir,et al. Stability of Grazing Systems: An Application of Predator-Prey Graphs , 1975 .
[5] Arjen Doelman,et al. Pulse Solutions for an Extended Klausmeier Model with Spatially Varying Coefficients , 2018, SIAM J. Appl. Dyn. Syst..
[6] J. Rottmann-Matthes. Stability of parabolic-hyperbolic traveling waves , 2012 .
[7] Kenneth J. Palmer,et al. Exponential dichotomies and transversal homoclinic points , 1984 .
[8] Arnd Scheel,et al. Corner defects in almost planar interface propagation , 2006 .
[9] M. Silber,et al. Transitions between patterned states in vegetation models for semiarid ecosystems. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[10] M. Haragus,et al. Almost Planar Waves in Anisotropic Media , 2006 .
[11] E. Meron,et al. Ecosystem engineers: from pattern formation to habitat creation. , 2004, Physical review letters.
[12] Arjen Doelman,et al. Existence and Stability of Traveling Pulses in a Reaction–Diffusion-Mechanics System , 2013, J. Nonlinear Sci..
[13] W. A. Coppel. Dichotomies in Stability Theory , 1978 .
[14] Todd Kapitula,et al. Spectral and Dynamical Stability of Nonlinear Waves , 2013 .
[15] Robbin Bastiaansen,et al. The dynamics of disappearing pulses in a singularly perturbed reaction–diffusion system with parameters that vary in time and space , 2018, Physica D: Nonlinear Phenomena.
[16] M. Silber,et al. Signatures of human impact on self-organized vegetation in the Horn of Africa , 2017, Scientific Reports.
[17] Peter Szmolyan,et al. Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..
[18] Christopher K. R. T. Jones,et al. Tracking invariant manifolds up to exponentially small errors , 1996 .
[19] Geertje Hek,et al. Rise and Fall of Periodic Patterns for a Generalized Klausmeier–Gray–Scott Model , 2013, J. Nonlinear Sci..
[20] R. May. Thresholds and breakpoints in ecosystems with a multiplicity of stable states , 1977, Nature.
[21] Stephen Schecter,et al. Exchange lemmas 2: General Exchange Lemma , 2008 .
[22] Michael J. Ward,et al. Explicitly Solvable Nonlocal Eigenvalue Problems and the Stability of Localized Stripes in Reaction‐Diffusion Systems , 2016 .
[23] Johan van de Koppel,et al. Regular pattern formation in real ecosystems. , 2008, Trends in ecology & evolution.
[24] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[25] G. Carpenter. A geometric approach to singular perturbation problems with applications to nerve impulse equations , 1977 .
[26] Arjen Doelman,et al. Homoclinic Stripe Patterns , 2002, SIAM J. Appl. Dyn. Syst..
[27] Arjen Doelman,et al. Spatially Periodic Multipulse Patterns in a Generalized Klausmeier-Gray-Scott Model , 2017, SIAM J. Appl. Dyn. Syst..
[28] Alexandre Bouvet,et al. Multistability of model and real dryland ecosystems through spatial self-organization , 2018, Proceedings of the National Academy of Sciences.
[29] A. Doelman,et al. Striped pattern selection by advective reaction-diffusion systems: resilience of banded vegetation on slopes. , 2015, Chaos.
[30] Björn Sandstede,et al. Fast Pulses with Oscillatory Tails in the FitzHugh-Nagumo System , 2015, SIAM J. Math. Anal..
[31] E. Meron,et al. Diversity of vegetation patterns and desertification. , 2001, Physical review letters.
[32] Björn Sandstede,et al. Unpeeling a Homoclinic Banana in the FitzHugh-Nagumo System , 2018, SIAM J. Appl. Dyn. Syst..
[33] L. Kumar,et al. Self‐Organization of Vegetation in Arid Ecosystems , 2002, The American Naturalist.
[34] C. Soto-Treviño. A Geometric Method for Periodic Orbits in Singularly-Perturbed Systems , 2001 .
[35] J. Sherratt,et al. Pattern selection and hysteresis in the Rietkerk model for banded vegetation in semi-arid environments , 2014, Journal of The Royal Society Interface.
[36] Frits Veerman,et al. An Explicit Theory for Pulses in Two Component, Singularly Perturbed, Reaction–Diffusion Equations , 2015 .
[37] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[38] W. Marsden. I and J , 2012 .
[39] Edgardo Gabriel Eszter. Evans function analysis of the stability of periodic travelling wave solutions associated with the Fitzhugh -Nagumo system , 1999 .
[40] Christopher K. R. T. Jones,et al. Electrical Waves in a One-Dimensional Model of Cardiac Tissue , 2008, SIAM J. Appl. Dyn. Syst..
[41] John Guckenheimer,et al. Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System , 2010, SIAM J. Appl. Dyn. Syst..
[42] M. Rietkerk,et al. Self-Organized Patchiness and Catastrophic Shifts in Ecosystems , 2004, Science.
[43] Maarten B. Eppinga,et al. Beyond Turing: The response of patterned ecosystems to environmental change , 2014 .
[44] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[45] W. A. Coppel,et al. Dichotomies and reducibility , 1967 .
[46] J. Bogaert,et al. Determinants and dynamics of banded vegetation pattern migration in arid climates , 2012 .
[47] S. Hastings. ON THE EXISTENCE OF HOMOCLINIC AND PERIODIC ORBITS FOR THE FITZHUGH-NAGUMO EQUATIONS , 1976 .
[48] M. Silber,et al. A topographic mechanism for arcing of dryland vegetation bands , 2018, Journal of The Royal Society Interface.
[49] Nicolas Barbier,et al. Environmental modulation of self‐organized periodic vegetation patterns in Sudan , 2011 .
[50] Björn Sandstede,et al. Stability of Pulse Solutions for the Discrete FitzHugh{Nagumo System , 2012 .
[51] Arjen Doelman,et al. Slowly Modulated Two-Pulse Solutions in the Gray--Scott Model I: Asymptotic Construction and Stability , 2000, SIAM J. Appl. Math..
[52] J. van de Koppel,et al. Site-specific properties and irreversible vegetation changes in semi-arid grazing systems , 1997 .
[53] T. Kapitula. Multidimensional stability of planar travelling waves , 1997 .
[54] Edgar Knobloch,et al. When Shil'nikov Meets Hopf in Excitable Systems , 2007, SIAM J. Appl. Dyn. Syst..
[55] Jonathan A. Sherratt,et al. Pattern Solutions of the Klausmeier Model for Banded Vegetation in Semiarid Environments V: The Transition from Patterns to Desert , 2013, SIAM J. Appl. Math..