Stable planar vegetation stripe patterns on sloped terrain in dryland ecosystems

In water-limited regions, competition for water resources results in the formation of vegetation patterns; on sloped terrain, one finds that the vegetation typically aligns in stripes or arcs. We consider a two-component reaction-diffusion-advection model of Klausmeier type describing the interplay of vegetation and water resources and the resulting dynamics of these patterns. We focus on the large advection limit on constantly sloped terrain, in which the diffusion of water is neglected in favor of advection of water downslope. Planar vegetation pattern solutions are shown to satisfy an associated singularly perturbed traveling wave equation, and we construct a variety of traveling stripe and front solutions using methods of geometric singular perturbation theory. In contrast to prior studies of similar models, we show that the resulting patterns are spectrally stable to perturbations in two spatial dimensions using exponential dichotomies and Lin's method. We also discuss implications for the appearance of curved stripe patterns on slopes in the absence of terrain curvature.

[1]  Paul Carter,et al.  Traveling Stripes in the Klausmeier Model of Vegetation Pattern Formation , 2018, SIAM J. Appl. Math..

[2]  Björn Sandstede,et al.  Stability of Traveling Pulses with Oscillatory Tails in the FitzHugh–Nagumo System , 2016, J. Nonlinear Sci..

[3]  C. Klausmeier,et al.  Regular and irregular patterns in semiarid vegetation , 1999, Science.

[4]  I. Noy-Meir,et al.  Stability of Grazing Systems: An Application of Predator-Prey Graphs , 1975 .

[5]  Arjen Doelman,et al.  Pulse Solutions for an Extended Klausmeier Model with Spatially Varying Coefficients , 2018, SIAM J. Appl. Dyn. Syst..

[6]  J. Rottmann-Matthes Stability of parabolic-hyperbolic traveling waves , 2012 .

[7]  Kenneth J. Palmer,et al.  Exponential dichotomies and transversal homoclinic points , 1984 .

[8]  Arnd Scheel,et al.  Corner defects in almost planar interface propagation , 2006 .

[9]  M. Silber,et al.  Transitions between patterned states in vegetation models for semiarid ecosystems. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  M. Haragus,et al.  Almost Planar Waves in Anisotropic Media , 2006 .

[11]  E. Meron,et al.  Ecosystem engineers: from pattern formation to habitat creation. , 2004, Physical review letters.

[12]  Arjen Doelman,et al.  Existence and Stability of Traveling Pulses in a Reaction–Diffusion-Mechanics System , 2013, J. Nonlinear Sci..

[13]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[14]  Todd Kapitula,et al.  Spectral and Dynamical Stability of Nonlinear Waves , 2013 .

[15]  Robbin Bastiaansen,et al.  The dynamics of disappearing pulses in a singularly perturbed reaction–diffusion system with parameters that vary in time and space , 2018, Physica D: Nonlinear Phenomena.

[16]  M. Silber,et al.  Signatures of human impact on self-organized vegetation in the Horn of Africa , 2017, Scientific Reports.

[17]  Peter Szmolyan,et al.  Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..

[18]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds up to exponentially small errors , 1996 .

[19]  Geertje Hek,et al.  Rise and Fall of Periodic Patterns for a Generalized Klausmeier–Gray–Scott Model , 2013, J. Nonlinear Sci..

[20]  R. May Thresholds and breakpoints in ecosystems with a multiplicity of stable states , 1977, Nature.

[21]  Stephen Schecter,et al.  Exchange lemmas 2: General Exchange Lemma , 2008 .

[22]  Michael J. Ward,et al.  Explicitly Solvable Nonlocal Eigenvalue Problems and the Stability of Localized Stripes in Reaction‐Diffusion Systems , 2016 .

[23]  Johan van de Koppel,et al.  Regular pattern formation in real ecosystems. , 2008, Trends in ecology & evolution.

[24]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[25]  G. Carpenter A geometric approach to singular perturbation problems with applications to nerve impulse equations , 1977 .

[26]  Arjen Doelman,et al.  Homoclinic Stripe Patterns , 2002, SIAM J. Appl. Dyn. Syst..

[27]  Arjen Doelman,et al.  Spatially Periodic Multipulse Patterns in a Generalized Klausmeier-Gray-Scott Model , 2017, SIAM J. Appl. Dyn. Syst..

[28]  Alexandre Bouvet,et al.  Multistability of model and real dryland ecosystems through spatial self-organization , 2018, Proceedings of the National Academy of Sciences.

[29]  A. Doelman,et al.  Striped pattern selection by advective reaction-diffusion systems: resilience of banded vegetation on slopes. , 2015, Chaos.

[30]  Björn Sandstede,et al.  Fast Pulses with Oscillatory Tails in the FitzHugh-Nagumo System , 2015, SIAM J. Math. Anal..

[31]  E. Meron,et al.  Diversity of vegetation patterns and desertification. , 2001, Physical review letters.

[32]  Björn Sandstede,et al.  Unpeeling a Homoclinic Banana in the FitzHugh-Nagumo System , 2018, SIAM J. Appl. Dyn. Syst..

[33]  L. Kumar,et al.  Self‐Organization of Vegetation in Arid Ecosystems , 2002, The American Naturalist.

[34]  C. Soto-Treviño A Geometric Method for Periodic Orbits in Singularly-Perturbed Systems , 2001 .

[35]  J. Sherratt,et al.  Pattern selection and hysteresis in the Rietkerk model for banded vegetation in semi-arid environments , 2014, Journal of The Royal Society Interface.

[36]  Frits Veerman,et al.  An Explicit Theory for Pulses in Two Component, Singularly Perturbed, Reaction–Diffusion Equations , 2015 .

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[38]  W. Marsden I and J , 2012 .

[39]  Edgardo Gabriel Eszter Evans function analysis of the stability of periodic travelling wave solutions associated with the Fitzhugh -Nagumo system , 1999 .

[40]  Christopher K. R. T. Jones,et al.  Electrical Waves in a One-Dimensional Model of Cardiac Tissue , 2008, SIAM J. Appl. Dyn. Syst..

[41]  John Guckenheimer,et al.  Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System , 2010, SIAM J. Appl. Dyn. Syst..

[42]  M. Rietkerk,et al.  Self-Organized Patchiness and Catastrophic Shifts in Ecosystems , 2004, Science.

[43]  Maarten B. Eppinga,et al.  Beyond Turing: The response of patterned ecosystems to environmental change , 2014 .

[44]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[45]  W. A. Coppel,et al.  Dichotomies and reducibility , 1967 .

[46]  J. Bogaert,et al.  Determinants and dynamics of banded vegetation pattern migration in arid climates , 2012 .

[47]  S. Hastings ON THE EXISTENCE OF HOMOCLINIC AND PERIODIC ORBITS FOR THE FITZHUGH-NAGUMO EQUATIONS , 1976 .

[48]  M. Silber,et al.  A topographic mechanism for arcing of dryland vegetation bands , 2018, Journal of The Royal Society Interface.

[49]  Nicolas Barbier,et al.  Environmental modulation of self‐organized periodic vegetation patterns in Sudan , 2011 .

[50]  Björn Sandstede,et al.  Stability of Pulse Solutions for the Discrete FitzHugh{Nagumo System , 2012 .

[51]  Arjen Doelman,et al.  Slowly Modulated Two-Pulse Solutions in the Gray--Scott Model I: Asymptotic Construction and Stability , 2000, SIAM J. Appl. Math..

[52]  J. van de Koppel,et al.  Site-specific properties and irreversible vegetation changes in semi-arid grazing systems , 1997 .

[53]  T. Kapitula Multidimensional stability of planar travelling waves , 1997 .

[54]  Edgar Knobloch,et al.  When Shil'nikov Meets Hopf in Excitable Systems , 2007, SIAM J. Appl. Dyn. Syst..

[55]  Jonathan A. Sherratt,et al.  Pattern Solutions of the Klausmeier Model for Banded Vegetation in Semiarid Environments V: The Transition from Patterns to Desert , 2013, SIAM J. Appl. Math..