Scales and Scale‐like Structures

We present a method for generating scales and scale‐like structures on a polygonal mesh through surface replacement. As input, we require a triangular mesh that will be covered with scales and one or more proxy‐models to be used as the scale's shape. A user begins scale generation by drawing a lateral line on the model to control the distribution and orientation of scales on the surface. We then create a vector field over the surface to control an anisotropic Voronoi tessellation, which represents the region occupied by each scale. Next we replace these regions by cutting the proxy model to match the boundary of the Voronoi region and deform the cut model onto the surface. The result is a fully connected 2‐manifold that is suitable for subsequent post‐processing applications like surface subdivision.

[1]  Qiang Du,et al.  Anisotropic Centroidal Voronoi Tessellations and Their Applications , 2005, SIAM J. Sci. Comput..

[2]  Kenji Shimada,et al.  Generating Organic Textures with Controlled Anisotropy and Directionality , 2003, IEEE Computer Graphics and Applications.

[3]  I. Arnulf,et al.  The development of squamation in four teleostean fishes with a survey of the literature , 1990 .

[4]  Michael F. Deering,et al.  A photon accurate model of the human eye , 2005, SIGGRAPH '05.

[5]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[6]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[7]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[8]  Adam Finkelstein,et al.  Lapped textures , 2000, SIGGRAPH.

[9]  Denis Zorin,et al.  Interactive modeling of topologically complex geometric detail , 2004, ACM Trans. Graph..

[10]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[11]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[12]  Eugene Zhang,et al.  Rotational symmetry field design on surfaces , 2007, ACM Trans. Graph..

[13]  Gladimir V. G. Baranoski,et al.  Light interaction with human skin: from believable images to predictable models , 2008, SIGGRAPH Asia '08.

[14]  Kun Zhou,et al.  Mesh quilting for geometric texture synthesis , 2006, ACM Trans. Graph..

[15]  Daniel Cohen-Or,et al.  Feature-aligned shape texturing , 2009, ACM Trans. Graph..

[16]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[17]  Bruno Lévy,et al.  N-symmetry direction field design , 2008, TOGS.

[18]  Serban D. Porumbescu,et al.  Shell maps , 2005, SIGGRAPH '05.

[19]  Greg Turk,et al.  Geometric texture synthesis by example , 2004, SGP '04.

[20]  Mathieu Desbrun,et al.  Height and Tilt Geometric Texture , 2009, ISVC.

[21]  Robert L. Cook,et al.  Shade trees , 1984, SIGGRAPH.

[22]  Hugues Hoppe,et al.  Design of tangent vector fields , 2007, SIGGRAPH 2007.

[23]  Baining Guo,et al.  Modeling and rendering of realistic feathers , 2002, SIGGRAPH.

[24]  Daniel Cohen-Or,et al.  SnapPaste: an interactive technique for easy mesh composition , 2006, The Visual Computer.

[25]  K. Kardong,et al.  Vertebrates: Comparative Anatomy, Function, Evolution , 1994 .

[26]  Kenneth I. Joy,et al.  Shell maps , 2005, ACM Trans. Graph..

[27]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[28]  James T. Kajiya,et al.  Rendering fur with three dimensional textures , 1989, SIGGRAPH.

[29]  Marek Teichmann,et al.  Polygonal Approximation of Voronoi Diagrams of a Set of Triangles in Three Dimensions , 1997 .

[30]  Konstantin Mischaikow,et al.  Vector field design on surfaces , 2006, TOGS.

[31]  Michael F. Deering A photon accurate model of the human eye , 2005, SIGGRAPH 2005.

[32]  Henning Biermann,et al.  Texture and Shape Synthesis on Surfaces , 2001, Rendering Techniques.

[33]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[34]  S. SIAMJ. ANISOTROPIC CENTROIDAL VORONOI TESSELLATIONS AND THEIR APPLICATIONS∗ , 2004 .

[35]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[36]  S. Gortler,et al.  3D Deformation Using Moving Least Squares , 2007 .

[37]  W. Chavin The Physiology of Fishes , 1957, The Yale Journal of Biology and Medicine.

[38]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..