Chaos and ergodicity are decidable for linear cellular automata over (Z/mZ)n
暂无分享,去创建一个
Enrico Formenti | Alberto Dennunzio | Luciano Margara | Darij Grinberg | L. Margara | Darij Grinberg | E. Formenti | A. Dennunzio
[1] Lieven Le Bruyn,et al. Algebraic properties of linear cellular automata , 1991 .
[2] Enrico Formenti,et al. Periodic Orbits and Dynamical Complexity in Cellular Automata , 2013, Fundam. Informaticae.
[3] Gianpiero Cattaneo,et al. Solution of some conjectures about topological properties of linear cellular automata , 2004, Theor. Comput. Sci..
[4] Alberto Dennunzio,et al. A Predator-Prey Cellular Automaton with Parasitic Interactions and Environmental Effects , 2008, Fundam. Informaticae.
[5] Gonzalo Álvarez,et al. Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems , 2003, Int. J. Bifurc. Chaos.
[6] Enrico Formenti,et al. Computing Issues of Asynchronous CA , 2012, Fundam. Informaticae.
[7] Enrico Formenti,et al. Non-uniform cellular automata: Classes, dynamics, and decidability , 2012, Inf. Comput..
[8] Enrico Formenti,et al. On the directional dynamics of additive cellular automata , 2009, Theor. Comput. Sci..
[9] Enrico Formenti,et al. Three research directions in non-uniform cellular automata , 2014, Theor. Comput. Sci..
[10] Alberto Dennunzio. From One-dimensional to Two-dimensional Cellular Automata , 2012, Fundam. Informaticae.
[11] Luigi Acerbi,et al. Conservation of some dynamical properties for operations on cellular automata , 2009, Theor. Comput. Sci..
[12] M. Shirvani,et al. Ergodic endomorphisms of compact abelian groups , 1988 .
[13] Ángel Martín del Rey,et al. A secret sharing scheme based on cellular automata , 2005, Appl. Math. Comput..
[14] Enrico Formenti,et al. Dynamical behavior of additive cellular automata over finite abelian groups , 2020, Theor. Comput. Sci..
[15] Giovanni Manzini,et al. A Complete and Efficiently Computable Topological Classification of D-dimensional Linear Cellular Automata over Zm , 1999, Theor. Comput. Sci..
[16] Nobuyasu Osato,et al. Linear Cellular Automata over Z_m , 1983, J. Comput. Syst. Sci..
[17] Enrico Formenti,et al. Local rule distributions, language complexity and non-uniform cellular automata , 2013, Theor. Comput. Sci..
[18] Gianpiero Cattaneo,et al. Ergodicity, transitivity, and regularity for linear cellular automata over Zm , 2000, Theor. Comput. Sci..
[19] Enrico Formenti,et al. Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues , 2014, Theor. Comput. Sci..