A most compendious and facile quantum de Finetti theorem

In its most basic form, the finite quantum de Finetti theorem states that the reduced k-partite density operator of an n-partite symmetric state can be approximated by a convex combination of k-fold product states. Variations of this result include Renner's “exponential” approximation by “almost-product” states, a theorem which deals with certain triples of representations of the unitary group, and the result of D'Cruz et al. [e-print quant-ph/0606139;Phys. Rev. Lett. 98, 160406 (2007)] for infinite-dimensional systems. We show how these theorems follow from a single, general de Finetti theorem for representations of symmetry groups, each instance corresponding to a particular choice of symmetry group and representation of that group. This gives some insight into the nature of the set of approximating states and leads to some new results, including an exponential theorem for infinite-dimensional systems.

[1]  Joonwoo Bae,et al.  Asymptotic quantum cloning is state estimation. , 2006, Physical review letters.

[2]  M. Fannes,et al.  Equilibrium states for mean field models , 1980 .

[3]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[4]  Debbie W. Leung,et al.  Quantum Key Distribution Based on Private States: Unconditional Security Over Untrusted Channels With Zero Quantum Capacity , 2006, IEEE Transactions on Information Theory.

[5]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[6]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[7]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[8]  Robin L. Hudson Analogs of de Finetti's theorem and interpretative problems of quantum mechanics , 1981 .

[9]  R. Renner Symmetry of large physical systems implies independence of subsystems , 2007 .

[10]  H. Nagaoka,et al.  A new proof of the channel coding theorem via hypothesis testing in quantum information theory , 2002, Proceedings IEEE International Symposium on Information Theory,.

[11]  Carlton M. Caves,et al.  Entanglement purification of unknown quantum states , 2001 .

[12]  I. G. MacDonald,et al.  Lectures on Lie groups and Lie algebras , 1995 .

[13]  R. Goodman,et al.  Representations and Invariants of the Classical Groups , 1998 .

[14]  Barbara M Terhal,et al.  Symmetric extensions of quantum States and local hidden variable theories. , 2003, Physical review letters.

[15]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[16]  Steven A. Gaal,et al.  Linear analysis and representation theory , 1973 .

[17]  Tobias J Osborne,et al.  Finite de Finetti theorem for infinite-dimensional systems. , 2007, Physical review letters.

[18]  P. Parrilo,et al.  Complete family of separability criteria , 2003, quant-ph/0308032.

[19]  Group theoretical quantum tomography , 2000, quant-ph/0004026.

[20]  Matthias Christandl,et al.  One-and-a-Half Quantum de Finetti Theorems , 2007 .

[21]  M. Fannes,et al.  Finite size mean-field models , 2006, quant-ph/0605216.

[22]  A. Kirillov Elements of the theory of representations , 1976 .

[23]  A. W. Knapp Lie groups beyond an introduction , 1988 .

[24]  R. Renner,et al.  A de Finetti representation for finite symmetric quantum states , 2004, quant-ph/0410229.

[25]  R. Werner,et al.  Quantum Statistical Mechanics of General Mean Field Systems , 1989 .