Parallel Full Space SQP Lagrange-Newton-Krylov-Schwarz Algorithms for PDE-Constrained Optimization Problems

Optimization problems constrained by nonlinear partial differential equations have been the focus of intense research in scientific computing lately. Current methods for the parallel numerical solution of such problems involve sequential quadratic programming (SQP), with either reduced or full space approaches. In this paper we propose and investigate a class of parallel full space SQP Lagrange--Newton--Krylov--Schwarz (LNKSz) algorithms. In LNKSz, a Lagrangian functional is formed and differentiated to obtain a Karush--Kuhn--Tucker (KKT) system of nonlinear equations. An inexact Newton method with line search is then applied. At each Newton iteration the linearized KKT system is solved with a Schwarz preconditioned Krylov subspace method. We apply LNKSz to the parallel numerical solution of some boundary control problems of two-dimensional incompressible Navier--Stokes equations. Numerical results are reported for different combinations of Reynolds number, mesh size, and number of parallel processors. We also compare the application of the LNKSz method to flow control problems against the application of the Newton--Krylov--Schwarz (NKSz) method to flow simulation problems.

[1]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[2]  J. J. Moré,et al.  Estimation of sparse jacobian matrices and graph coloring problems , 1983 .

[3]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[4]  V. Tikhomirov,et al.  Fundamental principles of the theory of extremal problems , 1986 .

[5]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[6]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[7]  G. Guj,et al.  Numerical solutions of high‐Re recirculating flows in vorticity‐velocity form , 1988 .

[8]  K. Kunisch,et al.  The augmented lagrangian method for parameter estimation in elliptic systems , 1990 .

[9]  R. Temam,et al.  On some control problems in fluid mechanics , 1990 .

[10]  O. Daube Resolution of the 2D Navier-Stokes Equations in Velocity-Vorticity Form by Means of an Influence Matrix Technique , 1992 .

[11]  L. Quartapelle,et al.  Numerical solution of the incompressible Navier-Stokes equations , 1993, International series of numerical mathematics.

[12]  Olof B. Widlund,et al.  Domain Decomposition Algorithms with Small Overlap , 1992, SIAM J. Sci. Comput..

[13]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[14]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[15]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[16]  L. Hou,et al.  FINITE-DIMENSIONAL APPROXIMATION OFA CLASS OFCONSTRAINED NONLINEAR OPTIMAL CONTROL PROBLEMS , 1996 .

[17]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[18]  S. Sritharan Optimal control of viscous flow , 1998 .

[19]  K. Kunisch,et al.  Augmented Lagrangian Algorithms for State Constrained Optimal Control Problems , 1998 .

[20]  M. Heinkenschloss Formulation and Analysis of a Sequential Quadratic Programming Method for the Optimal Dirichlet Boundary Control of Navier-Stokes Flow , 1998 .

[21]  Matthias Heinkenschloss,et al.  Preconditioners for Karush-Kuhn-Tucker Matrices Arising in the Optimal Control of Distributed Systems , 1998 .

[22]  William Gropp,et al.  Parallel Newton-Krylov-Schwarz Algorithms for the Transonic Full Potential Equation , 1996, SIAM J. Sci. Comput..

[23]  L. S. Hou,et al.  Numerical Approximation of Optimal Flow Control Problems by a Penalty Method: Error Estimates and Numerical Results , 1999, SIAM J. Sci. Comput..

[24]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[25]  A. V. Fursikov,et al.  Optimal control of distributed systems , 1999 .

[26]  K. Kunisch,et al.  Instantaneous control of backward-facing step flows , 1999 .

[27]  M. Heinkenschloss,et al.  Global Convergence of Trust-Region Interior-Point Algorithms for Infinite-Dimensional Nonconvex Mini , 1999 .

[28]  A. Fursikov Optimal Control of Distributed Systems: Theory and Applications , 2000 .

[29]  O. Pironneau,et al.  Applied Shape Optimization for Fluids , 2001 .

[30]  Karl Kunisch,et al.  Second Order Methods for Optimal Control of Time-Dependent Fluid Flow , 2001, SIAM J. Control. Optim..

[31]  A Multigrid Method for Optimal Control of Time-Dependent Reaction Diffusion Processes , 2001 .

[32]  Thomas Bewley,et al.  Flow control: new challenges for a new Renaissance , 2001 .

[33]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[34]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[35]  David E. Keyes,et al.  Nonlinearly Preconditioned Inexact Newton Algorithms , 2002, SIAM J. Sci. Comput..

[36]  D. Keyes,et al.  Nonlinear additive Schwarz preconditioners and applications in computational fluid dynamics , 2002 .

[37]  Xiao-Chuan Cai,et al.  A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier-Stokes equations , 2005 .

[38]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[39]  Xiao-Chuan Cai,et al.  Restricted Additive Schwarz Preconditioners with Harmonic Overlap for Symmetric Positive Definite Linear Systems , 2003, SIAM J. Numer. Anal..

[40]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[41]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..

[42]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..