The R Package geepack for Generalized Estimating Equations

This paper describes the core features of the R package geepack, which implements the generalized estimating equations (GEE) approach for fitting marginal generalized linear models to clustered data. Clustered data arise in many applications such as longitudinal data and repeated measures. The GEE approach focuses on models for the mean of the correlated observations within clusters without fully specifying the joint distribution of the observations. It has been widely used in statistical practice. This paper illustrates the application of the GEE approach with geepack through an example of clustered binary data.

[1]  J. Nelder,et al.  Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions , 2001 .

[2]  Donald A. Berry,et al.  Statistical Methodology in the Pharmaceutical Sciences , 1989 .

[3]  C. Kastner,et al.  The Generalised Estimating Equations: An Annotated Bibliography , 1998 .

[4]  Thomas Lumley XLISP-Stat Tools for Building Generalised Estimating Equation Models , 1996 .

[5]  John A. Nelder,et al.  Conditional and Marginal Models: Another View , 2004 .

[6]  Scott L. Zeger,et al.  Marginalized Multilevel Models and Likelihood Inference , 2000 .

[7]  Stuart R. Lipsitz,et al.  Review of Software to Fit Generalized Estimating Equation Regression Models , 1999 .

[8]  A Ziegler,et al.  Familial associations of lipid profiles: a generalized estimating equations approach. , 2000, Statistics in medicine.

[9]  Jason Fine,et al.  Estimating equations for association structures , 2004, Statistics in medicine.

[10]  N. Rao Chaganty,et al.  Efficiency of generalized estimating equations for binary responses , 2004 .

[11]  S. Zeger,et al.  Marginal Regression Models for Clustered Ordinal Measurements , 1996 .

[12]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[13]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[14]  P. Diggle Analysis of Longitudinal Data , 1995 .

[15]  Myunghee C. Paik,et al.  Repeated measurement analysis for nonnormal data in small samples , 1988 .

[16]  R. W. Wedderburn Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .

[17]  A. Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[18]  J. Nelder,et al.  Hierarchical Generalized Linear Models , 1996 .

[19]  N. Rao Chaganty,et al.  An alternative approach to the analysis of longitudinal data via generalized estimating equations , 1997 .