Learning of plan execution policies for indoor navigation

Most state-of-the-art navigation systems for autonomous service robots decompose navigation into global navigation planning and local (reactive) navigation. While the methods for navigation planning and local navigation themselves are well understood, the plan execution problem, the problem of how to generate and parameterize local navigation actions from a given navigation plan, is largely unsolved.This article describes how a robot can autonomously learn to execute navigation plans. We investigate how the robot can acquire causal models of the actions executable by the local navigation system and we develop a decision theoretic action selection function which uses the models learned to execute a given navigation plan. Finally, we show, both in simulation and on a RWI B21 mobile robot, that the learned action selection function improves the robot's navigation performance compared to standard plan execution techniques.

[1]  Wolfram Burgard,et al.  Active Mobile Robot Localization , 1997, IJCAI.

[2]  P. Utgoff,et al.  Multivariate Decision Trees , 1995, Machine Learning.

[3]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[4]  Wolfram Burgard,et al.  Integrating active localization into high-level robot control systems , 1998, Robotics Auton. Syst..

[5]  Ashwin Ram,et al.  Continuous Case-Based Reasoning , 1997, Artif. Intell..

[6]  R. Bellman Dynamic programming. , 1957, Science.

[7]  Erann Gat,et al.  ESL: a language for supporting robust plan execution in embedded autonomous agents , 1997, 1997 IEEE Aerospace Conference.

[8]  R. James Firby,et al.  An Investigation into Reactive Planning in Complex Domains , 1987, AAAI.

[9]  Michael Beetz,et al.  Environment and Task Adaptation for Robotic Agents , 2000 .

[10]  R. Peter Bonasso,et al.  Integrating Reaction Plans and Layered Competences Through Synchronous Control , 1991, IJCAI.

[11]  Erann Gat,et al.  Integrating Planning and Reacting in a Heterogeneous Asynchronous Architecture for Controlling Real-World Mobile Robots , 1992, AAAI.

[12]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[13]  Reid G. Simmons,et al.  The curvature-velocity method for local obstacle avoidance , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[14]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[15]  Sebastian Thrun,et al.  Explanation-Based Neural Network Learning for Robot Control , 1992, NIPS.

[16]  Luís Torgo,et al.  Predicting the Density of Algae Communities using Local Regression Trees , 2001 .

[17]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[18]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[19]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[20]  Robin R. Murphy,et al.  Artificial intelligence and mobile robots: case studies of successful robot systems , 1998 .

[21]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[22]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[23]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[24]  Wolfram Burgard,et al.  Map learning and high-speed navigation in RHINO , 1998 .

[25]  E. Gat On Three-Layer Architectures , 1997 .

[26]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[27]  Sebastian Thrun,et al.  An approach to learning mobile robot navigation , 1995, Robotics Auton. Syst..

[28]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[29]  Daniel M. Gaines,et al.  Using regression trees to learn action models , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[30]  Kurt Konolige,et al.  A gradient method for realtime robot control , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[31]  Francesco Mondada,et al.  Evolutionary neurocontrollers for autonomous mobile robots , 1998, Neural Networks.

[32]  Manu Sridharan,et al.  Multi-agent Q-learning and regression trees for automated pricing decisions , 2000, Proceedings Fourth International Conference on MultiAgent Systems.

[33]  S.J.J. Smith,et al.  Empirical Methods for Artificial Intelligence , 1995 .

[34]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[35]  Jonathan H. Connell,et al.  SSS: a hybrid architecture applied to robot navigation , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[36]  Leslie Pack Kaelbling Rex: A Symbolic Language for the Design and Parallel Implementation of Embedded Systems , 1987 .

[37]  Reid G. Simmons,et al.  Unsupervised learning of probabilistic models for robot navigation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.