Hybrid Three Dimensional (1D‐Hadamard, 2D‐Chemical Shift Imaging) Phosphorus Localized Spectroscopy of Phantom and Human Brain

A hybrid of two localized spectroscopy techniques, chemical shift imaging (CSI) and Hadamard spectroscopic imaging (HSI), is used to obtain an array of 16 x 16 x 4 (3 x3 x 3 cm3 voxels) proton‐decoupled phosphorus (31P) spectra of human brain. For equal spatial resolution, this organ's oblate shape requires fewer axial than coronal or sagittal slices. These different spatial requirements are well suited to 1D, 4th order, transverse HSI in the axial direction, combined with 2D 16 x 16 CSI in the other two orientations. The reduced localization matrix (16 x 16 x 4 over just the brain versus a cubic‐16 x 16 x 16 matrix of equal resolution, over the entire head) may proportionally shorten data acquisition if the voxel size is not signal‐to‐noise limited. In addition, the use of Hadamard encoding can improve the intervoxel spectral isolation.

[1]  R. Ordidge,et al.  A general approach to selection of multiple cubic volume elements using the ISIS technique , 1988, Magnetic resonance in medicine.

[2]  J. Frahm,et al.  Improvements in localized proton NMR spectroscopy of human brain. Water suppression, short echo times, and 1 ml resolution , 1990 .

[3]  T R Brown,et al.  Practical applications of chemical shift imaging , 1992, NMR in biomedicine.

[4]  John S. Leigh,et al.  Errors of fourier chemical-shift imaging and their corrections , 1991 .

[5]  J A Frank,et al.  Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET. , 1990, Radiology.

[6]  Double‐echo multislice proton spectroscopic imaging using Hadamard slice encoding , 1994, Magnetic resonance in medicine.

[7]  K. Uğurbil,et al.  NMR chemical shift imaging in three dimensions. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[8]  W. Steinbrich,et al.  Combined 1H-MR imaging and localized 31P-spectroscopy of intracranial tumors in 43 patients. , 1988, Journal of computer assisted tomography.

[9]  J S Taylor,et al.  Chemical shift imaging of human brain: axial, sagittal, and coronal P-31 metabolite images. , 1990, Radiology.

[10]  Multi‐band Adiabatic Inversion Pulses for Use with the 8th‐order Hadamard Spectroscopic Imaging Technique , 1992 .

[11]  G. Brix,et al.  Theoretical Description, Measurement, and Correction of Localization Errors in 31P Chemical-Shift Imaging , 1994 .

[12]  John S. Leigh,et al.  Transverse Hadamard spectroscopic imaging technique , 1990 .

[13]  G B Matson,et al.  Reduced phase encoding in spectroscopic imaging , 1994, Magnetic resonance in medicine.

[14]  John S. Leigh,et al.  B1-insensitive Hadamard spectroscopic imaging technique , 1991 .

[15]  J A Frank,et al.  Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. , 1992, Radiology.

[16]  J S Taylor,et al.  Metabolite images of the human arm: Changes in spatial and temporal distribution of high energy phosphates during exercise , 1991, NMR in biomedicine.

[17]  Roger J. Ordidge,et al.  Image-selected in Vivo spectroscopy (ISIS). A new technique for spatially selective nmr spectroscopy , 1986 .

[18]  J S Taylor,et al.  Proton‐decoupled 31P chemical shift imaging of the human brain in normal volunteers , 1993, NMR in biomedicine.

[19]  A. J. Shaka,et al.  Evaluation of a new broadband decoupling sequence: WALTZ-16 , 1983 .

[20]  J A Helpern,et al.  Human focal cerebral ischemia: evaluation of brain pH and energy metabolism with P-31 NMR spectroscopy. , 1992, Radiology.

[21]  G. Goelman,et al.  Hadamard spectroscopic imaging technique as applied to study human calf muscles , 1992, Magnetic resonance in medicine.

[22]  D. Gadian,et al.  Saturation effects in phosphorus‐31 magnetic resonance spectra of the human liver , 1991, Magnetic resonance in medicine.

[23]  P. Bottomley,et al.  The trouble with spectroscopy papers , 1992, Journal of magnetic resonance imaging : JMRI.

[24]  Markus von Kienlin,et al.  Spectral localization with optimal pointspread function , 1991 .

[25]  T R Brown,et al.  Two configurations of the four-ring birdcage coil for 1H imaging and 1H-decoupled 31P spectroscopy of the human head. , 1994, Journal of magnetic resonance. Series B.

[26]  G B Matson,et al.  Lateralization of human focal epilepsy by 31P magnetic resonance spectroscopic imaging , 1992, Neurology.

[27]  H C Charles,et al.  Human in vivo phosphate metabolite imaging with 31P NMR , 1988, Magnetic resonance in medicine.

[28]  G. Goelman,et al.  pH heterogeneity during exercise in localized spectra from single human muscles. , 1993, The American journal of physiology.

[29]  T. Chenevert,et al.  Image localized 31P magnetic resonance spectroscopy of the human liver , 1989, NMR in biomedicine.

[30]  Richard R. Ernst,et al.  Sensitivity and performance time in NMR imaging , 1979 .

[31]  C T Moonen,et al.  Short echo time proton MR spectroscopic imaging. , 1993, Journal of computer assisted tomography.

[32]  P. Bottomley Spatial Localization in NMR Spectroscopy in Vivo , 1987, Annals of the New York Academy of Sciences.

[33]  Andrew A. Maudsley,et al.  Sensitivity in fourier imaging , 1986 .

[34]  Meir Shinnar,et al.  Inversion of the Bloch equation , 1993 .

[35]  N. Sloane,et al.  Hadamard and Other Discrete Transforms in Spectroscopy , 1982 .

[36]  W. J. Lorenz,et al.  In vivo nuclear overhauser effect in 31P‐ {1H} double‐resonance experiments in a 1.5‐T whole‐body MR system , 1990, Magnetic resonance in medicine.

[37]  W. Perman,et al.  Spatially resolved high resolution spectroscopy by “four-dimensional” NMR , 1983 .

[38]  W. Negendank,et al.  Studies of human tumors by MRS: A review , 1992, NMR in biomedicine.