Primality testing using elliptic curves
暂无分享,去创建一个
[1] D. Chudnovsky,et al. Sequences of numbers generated by addition in formal groups and new primality and factorization tests , 1986 .
[2] E. Szemerédi,et al. Infinite sets of primes with fast primality tests and quick generation of large primes , 1989 .
[3] R. Schoof. Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .
[4] Ming-Deh A. Huang,et al. Primality Testing and Abelian Varieties over Finite Fields , 1992 .
[5] Vaughan R. Pratt,et al. Every Prime has a Succinct Certificate , 1975, SIAM J. Comput..
[6] Arjen K. Lenstra,et al. Algorithms in Number Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[7] GoldwasserShafi,et al. Primality testing using elliptic curves , 1999 .
[8] Joseph H. Silverman,et al. The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.
[9] H. Lenstra,et al. Primalitv Testing and Jacobi Sums , 2010 .
[10] Françoise Morain. Calcul du nombre de points sur une courbe elliptique dans un corps fini : aspects algorithmiques , 1995 .
[11] Wieb Bosma,et al. Faster Primality Testing (Extended Abstract) , 1989, EUROCRYPT.
[12] N. Elkies. Elliptic and modular curves over finite fields and related computational issues , 1997 .
[13] Françoise Morain. Courbes elliptiques et tests de primalité , 1990 .
[14] M. Rabin. Probabilistic algorithm for testing primality , 1980 .
[15] Gary L. Miller. Riemann's Hypothesis and Tests for Primality , 1976, J. Comput. Syst. Sci..
[16] Leonard M. Adleman,et al. Recognizing primes in random polynomial time , 1987, STOC.
[17] Gang Yu. The Differences Between Consecutive Primes , 1996 .
[18] John Brillhart. Factorizations of bn [plus or minus symbol] 1, b=2, 3, 5, 6, 7, 10, 11, 12 up to high powers , 1983 .
[19] Joe Kilian,et al. Almost all primes can be quickly certified , 1986, STOC '86.
[20] H. Lenstra,et al. A hyperelliptic smoothness test. I , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[21] H. W. Lenstra,et al. Factoring integers with elliptic curves , 1987 .
[22] D. Bernstein. DISTINGUISHING PRIME NUMBERS FROM COMPOSITE NUMBERS , 2022 .
[23] Gary L. Miller,et al. On taking roots in finite fields , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[24] Erich Kaltofen,et al. An improved Las Vegas primality test , 1989, ISSAC '89.
[25] D. H. Lehmer,et al. New primality criteria and factorizations of 2^{}±1 , 1975 .
[26] M. C. Wunderlich. A performance analysis of a simple prime-testing algorithm , 1983 .
[27] Joe Kilian,et al. Uses of randomness in algorithms and protocols , 1990 .
[28] Laurent Dewaghe,et al. Calcul du nombre de points sur une courbe elliptique dans un corps fini , 1996 .
[29] Preda Mihailescu,et al. Cyclotomy Primality Proving - Recent Developments , 1998, ANTS.
[30] Leonard M. Adleman,et al. On distinguishing prime numbers from composite numbers , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).
[31] R. Schoof. Journal de Theorie des Nombres de Bordeaux 7 (1995), 219{254 , 2022 .
[32] Volker Strassen,et al. A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..
[33] C. Pomerance. Very short primality proofs , 1987 .