Primality testing using elliptic curves

We present a primality proving algorithm—a probablistic primality test that produces short certificates of primality on prime inputs. We prove that the test runs in expected polynomial time for all but a vanishingly small fraction of the primes. As a corollary, we obtain an algorithm for generating large certified primes with distribution statistically close to uniform. Under the conjecture that the gap between consecutive primes is bounded by some polynomial in their size, the test is shown to run in expected polynomial time for all primes, yielding a Las Vegas primality test. Our test is based on a new methodology for applying group theory to the problem of prime certification, and the application of this methodology using groups generated by elliptic curves over finite fields. We note that our methodology and methods have been subsequently used and improved upon, most notably in the primality proving algorithm of Adleman and Huang using hyperelliptic curves and in practical primality provers using elliptic curves.

[1]  D. Chudnovsky,et al.  Sequences of numbers generated by addition in formal groups and new primality and factorization tests , 1986 .

[2]  E. Szemerédi,et al.  Infinite sets of primes with fast primality tests and quick generation of large primes , 1989 .

[3]  R. Schoof Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .

[4]  Ming-Deh A. Huang,et al.  Primality Testing and Abelian Varieties over Finite Fields , 1992 .

[5]  Vaughan R. Pratt,et al.  Every Prime has a Succinct Certificate , 1975, SIAM J. Comput..

[6]  Arjen K. Lenstra,et al.  Algorithms in Number Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[7]  GoldwasserShafi,et al.  Primality testing using elliptic curves , 1999 .

[8]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[9]  H. Lenstra,et al.  Primalitv Testing and Jacobi Sums , 2010 .

[10]  Françoise Morain Calcul du nombre de points sur une courbe elliptique dans un corps fini : aspects algorithmiques , 1995 .

[11]  Wieb Bosma,et al.  Faster Primality Testing (Extended Abstract) , 1989, EUROCRYPT.

[12]  N. Elkies Elliptic and modular curves over finite fields and related computational issues , 1997 .

[13]  Françoise Morain Courbes elliptiques et tests de primalité , 1990 .

[14]  M. Rabin Probabilistic algorithm for testing primality , 1980 .

[15]  Gary L. Miller Riemann's Hypothesis and Tests for Primality , 1976, J. Comput. Syst. Sci..

[16]  Leonard M. Adleman,et al.  Recognizing primes in random polynomial time , 1987, STOC.

[17]  Gang Yu The Differences Between Consecutive Primes , 1996 .

[18]  John Brillhart Factorizations of bn [plus or minus symbol] 1, b=2, 3, 5, 6, 7, 10, 11, 12 up to high powers , 1983 .

[19]  Joe Kilian,et al.  Almost all primes can be quickly certified , 1986, STOC '86.

[20]  H. Lenstra,et al.  A hyperelliptic smoothness test. I , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[21]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[22]  D. Bernstein DISTINGUISHING PRIME NUMBERS FROM COMPOSITE NUMBERS , 2022 .

[23]  Gary L. Miller,et al.  On taking roots in finite fields , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[24]  Erich Kaltofen,et al.  An improved Las Vegas primality test , 1989, ISSAC '89.

[25]  D. H. Lehmer,et al.  New primality criteria and factorizations of 2^{}±1 , 1975 .

[26]  M. C. Wunderlich A performance analysis of a simple prime-testing algorithm , 1983 .

[27]  Joe Kilian,et al.  Uses of randomness in algorithms and protocols , 1990 .

[28]  Laurent Dewaghe,et al.  Calcul du nombre de points sur une courbe elliptique dans un corps fini , 1996 .

[29]  Preda Mihailescu,et al.  Cyclotomy Primality Proving - Recent Developments , 1998, ANTS.

[30]  Leonard M. Adleman,et al.  On distinguishing prime numbers from composite numbers , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[31]  R. Schoof Journal de Theorie des Nombres de Bordeaux 7 (1995), 219{254 , 2022 .

[32]  Volker Strassen,et al.  A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..

[33]  C. Pomerance Very short primality proofs , 1987 .