Room Temperature Broadband Infrared Carbon Nanotube Photodetector with High Detectivity and Stability

[1]  Lianmao Peng,et al.  Carbon nanotube arrays based high-performance infrared photodetector [Invited] , 2012 .

[2]  M. Engel,et al.  The polarized carbon nanotube thin film LED. , 2010, Optics express.

[3]  Robert C. Haddon,et al.  Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films , 2006, Science.

[4]  S. Bachilo,et al.  Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. , 2010, Nature nanotechnology.

[5]  Lianmao Peng,et al.  Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes. , 2015, Nanoscale.

[6]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[7]  Yongfu Li,et al.  Low-frequency noise characteristics of extended wavelength InGaAs infrared detector , 2009, Applied Optics and Photonics China.

[8]  Shenqiang Ren,et al.  Broad‐Spectral‐Response Nanocarbon Bulk‐Heterojunction Excitonic Photodetectors , 2013, Advanced materials.

[9]  F. Wei,et al.  Carbon nanotube light sensors with linear dynamic range of over 120 dB , 2014 .

[10]  Judy Z. Wu,et al.  Extraordinary photocurrent harvesting at type-II heterojunction interfaces: toward high detectivity carbon nanotube infrared detectors. , 2012, Nano letters.

[11]  Koichiro Ueno,et al.  Miniaturized InSb photovoltaic infrared sensor operating at room temperature , 2006, SPIE Photonics Europe.

[12]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[13]  Lianmao Peng,et al.  A Doping‐Free Carbon Nanotube CMOS Inverter‐Based Bipolar Diode and Ambipolar Transistor , 2008 .

[14]  L. Yang,et al.  Efficient photovoltage multiplication in carbon nanotubes , 2011 .

[15]  Feng Ding,et al.  Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts , 2014, Nature.

[16]  J. U. Lee,et al.  Photovoltaic effect in ideal carbon nanotube diodes , 2005 .

[17]  P. Avouris,et al.  Photoconductivity of Single Carbon Nanotubes , 2003 .

[18]  Xiangke Liao,et al.  Correction: Corrigendum: Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax , 2015, Nature Communications.

[19]  A. Rogalski Infrared detectors: status and trends , 2003 .

[20]  Caleb Christianson,et al.  High photoresponse in hybrid graphene-carbon nanotube infrared detectors. , 2013, ACS applied materials & interfaces.

[21]  Bryan M. Wong,et al.  Color Detection Using Chromophore-Nanotube Hybrid Devices , 2009, Nano letters.

[22]  Zhenan Bao,et al.  Significant Enhancement of Infrared Photodetector Sensitivity Using a Semiconducting Single‐Walled Carbon Nanotube/C60 Phototransistor , 2015, Advanced materials.

[23]  O. B. Akan,et al.  A Communication Theoretical Modeling of Single-Walled Carbon Nanotube Optical Nanoreceivers and Broadcast Power Allocation , 2012, IEEE Transactions on Nanotechnology.

[24]  J. Moon,et al.  High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm , 2009, Science.

[25]  Xin Xu,et al.  Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors. , 2009, Nano letters.

[26]  Jenny Clark,et al.  Organic photonics for communications , 2010 .

[27]  E. Sargent Infrared Quantum Dots , 2005 .

[28]  Junichiro Kono,et al.  Uncooled Carbon Nanotube Photodetectors , 2015 .

[29]  Chang-Feng Wan,et al.  1/f noise in HgCdTe photodiodes , 2005 .

[30]  Meng-Yin Wu,et al.  Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. , 2011, Nano letters.

[31]  Lianmao Peng,et al.  Length scaling of carbon nanotube electric and photo diodes down to sub-50 nm. , 2014, Nano letters.

[32]  David H Waldeck,et al.  Carbon nanotube-polymer nanocomposite infrared sensor. , 2008, Nano letters.

[33]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[34]  A. Rogalski,et al.  HgCdTe buried multi-junction photodiodes fabricated by the liquid phase epitaxy , 2002 .

[35]  M. Engel,et al.  Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices. , 2012, ACS nano.