A Highly Skin-Conformal and Biodegradable Graphene-Based Strain Sensor

Dr. S. Wan, Z. H. Zhu, Dr. K. B. Yin, Dr. S. Su, Dr. H. C. Bi, Dr. T. Xu, Dr. H. T. Zhang, Z. H. Shi, Dr. L. B. He, Prof. L. T. Sun SEU-FEI Nano-Pico Center Key Laboratory of MEMS of Ministry of Education Collaborative Innovation Center for Micro/Nano Fabrication Device and System Southeast University Nanjing 210096, P. R. China E-mail: slt@seu.edu.cn Dr. K. B. Yin, Dr. S. Su, Dr. L. B. He, Prof. L. T. Sun Center for Advanced Materials and Manufacture Joint Research Institute of Southeast University and Monash University Suzhou 215123, P. R. China Dr. H. C. Bi, Prof. L. T. Sun Center for Advanced Carbon Materials Southeast University and Jiangnan Graphene Research Institute Changzhou 213100, P. R. China The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/smtd.201700374.

[1]  Xiaodong Chen,et al.  Skin‐Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture , 2016, Advanced materials.

[2]  Chunya Wang,et al.  Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin , 2017 .

[3]  K. Hata,et al.  A stretchable carbon nanotube strain sensor for human-motion detection. , 2011, Nature nanotechnology.

[4]  Hossam Haick,et al.  Flexible sensors based on nanoparticles. , 2013, ACS nano.

[5]  Hossam Haick,et al.  High‐Resolution Unpixelated Smart Patches with Antiparallel Thickness Gradients of Nanoparticles , 2015, Advanced materials.

[6]  Xiaodan Gu,et al.  Intrinsically stretchable and healable semiconducting polymer for organic transistors , 2016, Nature.

[7]  T. Trung,et al.  Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human‐Activity Monitoringand Personal Healthcare , 2016, Advanced materials.

[8]  Claire M. Lochner,et al.  Monitoring of Vital Signs with Flexible and Wearable Medical Devices , 2016, Advanced materials.

[9]  Ja Hoon Koo,et al.  Highly Skin‐Conformal Microhairy Sensor for Pulse Signal Amplification , 2014, Advanced materials.

[10]  Huanyu Cheng,et al.  Large‐Area Ultrathin Graphene Films by Single‐Step Marangoni Self‐Assembly for Highly Sensitive Strain Sensing Application , 2016 .

[11]  Benjamin C. K. Tee,et al.  Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. , 2011, Nature nanotechnology.

[12]  Ivan Lee,et al.  Highly Sensitive, Wearable, Durable Strain Sensors and Stretchable Conductors Using Graphene/Silicon Rubber Composites , 2016 .

[13]  Yaping Zang,et al.  Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection , 2015, Nature Communications.

[14]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[15]  Xiao Xie,et al.  Graphene oxide as high-performance dielectric materials for capacitive pressure sensors , 2017 .

[16]  M. R. Kessler,et al.  Study of Physically Transient Insulating Materials as a Potential Platform for Transient Electronics and Bioelectronics , 2014 .

[17]  Benjamin C. K. Tee,et al.  Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.

[18]  Michel Destrade,et al.  Characterization of the anisotropic mechanical properties of excised human skin. , 2013, Journal of the mechanical behavior of biomedical materials.

[19]  Allister F. McGuire,et al.  A skin-inspired organic digital mechanoreceptor , 2015, Science.

[20]  B. Shirinzadeh,et al.  A wearable and highly sensitive pressure sensor with ultrathin gold nanowires , 2014, Nature Communications.

[21]  Jonghwa Park,et al.  Bioinspired Interlocked and Hierarchical Design of ZnO Nanowire Arrays for Static and Dynamic Pressure‐Sensitive Electronic Skins , 2015 .

[22]  Ja Hoon Koo,et al.  Conductive Fiber‐Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics , 2015, Advanced materials.

[23]  U. Chung,et al.  Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array , 2014, Advanced materials.

[24]  Youngjin Park,et al.  Microtopography‐Guided Conductive Patterns of Liquid‐Driven Graphene Nanoplatelet Networks for Stretchable and Skin‐Conformal Sensor Array , 2017, Advanced materials.

[25]  He Tian,et al.  An intelligent artificial throat with sound-sensing ability based on laser induced graphene , 2017, Nature Communications.

[26]  Shuoran Chen,et al.  Nanoparticle Based Curve Arrays for Multirecognition Flexible Electronics , 2016, Advanced materials.

[27]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[28]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[29]  Xuewen Wang,et al.  Silk‐Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals , 2014, Advanced materials.

[30]  Benjamin C. K. Tee,et al.  An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. , 2012, Nature nanotechnology.

[31]  Y. Bonnassieux,et al.  Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes , 2015 .

[32]  R. Dauskardt,et al.  An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film , 2014, Nature Communications.

[33]  John A. Rogers,et al.  Biodegradable Thin Metal Foils and Spin‐On Glass Materials for Transient Electronics , 2015 .