Minimax state estimation for linear discrete-time differential-algebraic equations

This paper presents a state estimation approach for an uncertain linear equation with a non-invertible operator in Hilbert space. The approach addresses linear equations with uncertain deterministic input and noise in the measurements, which belong to a given convex closed bounded set. A new notion of a minimax observable subspace is introduced. By means of the presented approach, new equations describing the dynamics of a minimax recursive estimator for discrete-time non-causal differential-algebraic equations (DAEs) are presented. For the case of regular DAEs it is proved that the estimator's equation coincides with the equation describing the seminal Kalman filter. The properties of the estimator are illustrated by a numerical example.

[1]  S. Zhuk Closedness and normal solvability of an operator generated by a degenerate linear differential equation with variable coefficients , 2007 .

[2]  Hiroaki Mukaidani Recursive approach of optimal Kalman filtering problem for multiparameter singularly perturbed systems , 2005, Int. J. Syst. Sci..

[3]  A. Kurzhanski,et al.  Ellipsoidal Calculus for Estimation and Control , 1996 .

[4]  Sergiy Zhuk State estimation for a dynamical system described by a linear equation with unknown parameters , 2009 .

[5]  Lihua Xie,et al.  Risk-sensitive filtering, prediction and smoothing for discrete-time singular systems , 2003, Autom..

[6]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[7]  François Delebecque,et al.  Kalman filtering for general discrete-time linear systems , 1999, IEEE Trans. Autom. Control..

[8]  R. Tempo Robust estimation and filtering in the presence of bounded noise , 1987, 26th IEEE Conference on Decision and Control.

[9]  M. Terra,et al.  Optimal recursive estimation for discrete-time descriptor systems , 2004 .

[10]  R. Bellman,et al.  Dynamic Programming and Partial Differential Equations , 2012 .

[11]  Arthur Albert,et al.  Regression and the Moore-Penrose Pseudoinverse , 2012 .

[12]  Shengyuan Xu,et al.  Reduced-order H∞ filtering for singular systems , 2007, Syst. Control. Lett..

[13]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[14]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[15]  Alan J. Laub,et al.  The linear-quadratic optimal regulator for descriptor systems , 1985, 1985 24th IEEE Conference on Decision and Control.

[16]  R. Tempo,et al.  Optimal algorithms theory for robust estimation and prediction , 1985 .

[17]  John S. Baras,et al.  NONLINEAR FILTERING: The SET-MEMBERSHIP (BOUNDING) and the H∞ TECHNIQUES , 1995 .

[18]  Gennadiy M. Bakan Analytical Synthesis of Guaranteed Estimation Algorithms of Dynamic Process States , 2003 .

[19]  Shengyuan Xu,et al.  H∞ filtering for singular systems , 2003, IEEE Trans. Autom. Control..

[20]  A. Balakrishnan Applied Functional Analysis , 1976 .

[21]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[22]  F. Lewis A survey of linear singular systems , 1986 .

[23]  Vsevolod Mikhaµilovich Kundt sevich,et al.  Guaranteed Estimates, Adaptation and Robustness in Control Systems , 1992 .

[24]  A. Laub,et al.  The linear-quadratic optimal regulator for descriptor systems , 1987 .

[25]  Jeff S. Shamma,et al.  Set-valued observers and optimal disturbance rejection , 1999, IEEE Trans. Autom. Control..

[26]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[27]  F. Chernousko State Estimation for Dynamic Systems , 1993 .

[28]  Zi-Li Deng,et al.  Descriptor Kalman estimators , 1999, Int. J. Syst. Sci..

[29]  Tosio Kato Perturbation theory for linear operators , 1966 .

[30]  Ali H. Sayed,et al.  A framework for state-space estimation with uncertain models , 2001, IEEE Trans. Autom. Control..

[31]  D. Bertsekas,et al.  Recursive state estimation for a set-membership description of uncertainty , 1971 .