Using marine macroalgae for carbon sequestration: a critical appraisal

[1]  Y. Seo,et al.  Red algae and their use in papermaking. , 2010, Bioresource technology.

[2]  K. Gao,et al.  Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta) , 2009 .

[3]  S. Davis,et al.  Life-cycle analysis and the ecology of biofuels. , 2009, Trends in plant science.

[4]  Carlos M. Duarte,et al.  Blue carbon - A rapid response assessment , 2009 .

[5]  Stephen P. Long,et al.  Meeting US biofuel goals with less land: the potential of Miscanthus , 2008 .

[6]  L. P. Koh Can oil palm plantations be made more hospitable for forest butterflies and birds , 2008 .

[7]  S. Polasky,et al.  Land Clearing and the Biofuel Carbon Debt , 2008, Science.

[8]  Jacinto F. Fabiosa,et al.  Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change , 2008, Science.

[9]  D. Sawyer Climate change, biofuels and eco-social impacts in the Brazilian Amazon and Cerrado , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[10]  W. Esaias,et al.  Assessment of Primary Production at the Global Scale , 2007 .

[11]  R. Dickinson,et al.  Couplings between changes in the climate system and biogeochemistry , 2007 .

[12]  A. Middelboe,et al.  Direct effects of pH and inorganic carbon on macroalgal photosynthesis and growth , 2007 .

[13]  D. Spracklen,et al.  Carbon Mitigation by Biofuels or by Saving and Restoring Forests? , 2007, Science.

[14]  L. P. Koh Impacts of land use change on South‐east Asian forest butterflies: a review , 2007 .

[15]  R. Steneck,et al.  Chapter 7 Vulnerability of macroalgae of the Great Barrier Reef to climate change , 2007 .

[16]  Keith Douglass Warner,et al.  Sustainable Development of the Agricultural Bio-Economy , 2007, Science.

[17]  T. Titlyanova,et al.  Interaction between benthic algae (Lyngbya bouillonii, Dictyota dichotoma) and scleractinian coral Porites lutea in direct contact , 2007 .

[18]  H. L. Miller,et al.  Global climate projections , 2007 .

[19]  D. Tilman,et al.  Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass , 2006, Science.

[20]  Leo Petrus,et al.  Biomass to biofuels, a chemical perspective , 2006 .

[21]  Tommy Dalgaard,et al.  Looking at Biofuels and Bioenergy , 2006, Science.

[22]  S. M. Renaud,et al.  Seasonal Variation in the Chemical Composition of Tropical Australian Marine Macroalgae , 2006, Journal of Applied Phycology.

[23]  R. Pollnac,et al.  Weeding through assumptions of livelihood approaches in ICM : Seaweed farming in the Philippines and Indonesia , 2005 .

[24]  R. Andersen,et al.  Algal culturing techniques , 2005 .

[25]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[26]  Michael S. Foster,et al.  TEN YEARS OF INDUCED OCEAN WARMING CAUSES COMPREHENSIVE CHANGES IN MARINE BENTHIC COMMUNITIES , 2004 .

[27]  M. Troell,et al.  Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture , 2004 .

[28]  Daisuke Muraoka,et al.  Seaweed resources as a source of carbon fixation (Special Issue: Aquaculture and Stock Enhancement of Algae and Filter Feeders) -- (Capter 2. Aquaculture as a nutrient recycling technology) , 2004 .

[29]  John Beardall,et al.  The potential effects of global climate change on microalgal photosynthesis, growth and ecology , 2004 .

[30]  Z. Dubinsky,et al.  Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhodophyta) , 1999, Journal of Applied Phycology.

[31]  Masao Ohno,et al.  World seaweed utilisation: An end-of-century summary , 1999, Journal of Applied Phycology.

[32]  S. Horn,et al.  Biological degradation of Ascophyllum nodosum , 1997, Journal of Applied Phycology.

[33]  J. Fleurence,et al.  Fatty acids from 11 marine macroalgae of the French Brittany coast , 1994, Journal of Applied Phycology.

[34]  K. Gao,et al.  Use of macroalgae for marine biomass production and CO2 remediation: a review , 1994, Journal of Applied Phycology.

[35]  K. Asada,et al.  Influence of enhanced CO2 on growth and photosynthesis of the red algaeGracilaria sp. andG. chilensis , 1993, Journal of Applied Phycology.

[36]  A. M. Johnston,et al.  The acquisition of inorganic carbon by four red macroalgae , 1992, Oecologia.

[37]  K. Asada,et al.  Enhanced growth of the red algaPorphyra yezoensis Ueda in high CO2 concentrations , 2004, Journal of Applied Phycology.

[38]  K. Nielsen Nutrient loading and consumers: Agents of change in open-coast macrophyte assemblages , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  B. Moss Phytoplankton Productivity: Carbon Assimilation in Marine and Freshwater Ecosystems , 2003 .

[40]  A. Israel,et al.  Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations , 2002 .

[41]  M. Öhman,et al.  Influence of algal farming on fish assemblages. , 2001, Marine pollution bulletin.

[42]  N. Kautsky,et al.  INTEGRATING SEAWEEDS INTO MARINE AQUACULTURE SYSTEMS: A KEY TOWARD SUSTAINABILITY , 2001 .

[43]  Britta Schaffelke,et al.  Short-term nutrient pulses as tools to assess responses of coral reef macroalgae to enhanced nutrient availability , 1999 .

[44]  J. Beardall,et al.  Inorganic carbon acquisition by two Antarctic macroalgae, Porphyra endiviifolium (Rhodophyta: Bangiales) and Palmaria decipiens (Rhodophyta: Palmariales) , 1999, Polar Biology.

[45]  F. Figueroa,et al.  External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae , 1998 .

[46]  S. Beer,et al.  Biodiversity of Marine Plants in an Era of Climate Change: Some Predictions Based on Physiological Performance , 1998 .

[47]  A. Critchley,et al.  Seaweed resources of the world , 1998 .

[48]  C. Fernández,et al.  Ecology of Sargassum muticum on the North Coast of Spain. II. Physiological Differences between Sargassum muticum and Cystoseira nodicaulis , 1997 .

[49]  A. Breeman,et al.  Temperature responses of tropical to warm temperate seaweeds. II. Evidence for ecotypic differentiation in amphi-Atlantic tropical-Mediterranean species , 1996 .

[50]  A. Breeman,et al.  Temperature responses of tropical to warm temperate seaweeds. I. Absence of ecotypic differentiation in amphi-Atlantic tropical-Canary Islands species , 1996 .

[51]  S. Gilman,et al.  Climate-Related, Long-Term Faunal Changes in a California Rocky Intertidal Community , 1995, Science.

[52]  S. Beer,et al.  Photosynthesis in air and in water of Acanthophora najadiformis growing within a narrow zone of the intertidal , 1993 .

[53]  K. Asada,et al.  Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration , 1993 .

[54]  R. Ritschard Marine algae as a co2 sink , 1992 .

[55]  J. Raven,et al.  Inorganic C acquisition processes and their ecological significance in inter- and sub-tidal macroalgae of North Carolina , 1992 .

[56]  C. Osmond,et al.  INORGANIC CARBON LIMITATION OF PHOTOSYNTHESIS IN ULVA ROTUNDATA (CHLOROPHYTA) 1 , 1991 .

[57]  K. Gao,et al.  Effects of Nutrients on the Photosynthesis of Sargassum thunbergii , 1990 .

[58]  C. Fernández,et al.  Ecology of Sargassum muticum on the North Coast of Spain. Preliminary Observations , 1990 .

[59]  A. Breeman Expected Effects of Changing Seawater Temperatures on the Geographic Distribution of Seaweed Species , 1990 .

[60]  J. Raven,et al.  The ecophysiology of inorganic carbon assimilation by Durvillaea potatorum (Durvillaeales, Phaeophyta) , 1989 .

[61]  K. Gao,et al.  Studies on diurnal photosynthetic performance of Sargassum thunbergii I changes in photosynthesis under natural sunlight , 1989 .

[62]  K. Gao,et al.  Studies on diurnal photosynthetic performance of Sargassum thunbergii II Explanation of diurnal photosynthesis patterns from examinations in the laboratory , 1989 .

[63]  K. Gao,et al.  Comparative studies of photosynthesis in different parts of Sargassum thunbergii , 1989 .

[64]  M. Littler,et al.  Significance of macroalgal polymorphism: intraspecific tests of the functional-form model , 1988 .

[65]  J. R. Waaland,et al.  Photoinhibition of photosynthesis in a sun and a shade species of the red algal genus Porphyra , 1988 .

[66]  G. Jackson Modelling the growth and harvest yield of the giant kelp Macrocystis pyrifera , 1987 .

[67]  R. Paine,et al.  Wave energy and intertidal productivity. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[68]  B. Lapointe Phosphorus-limited photosynthesis and growth of Sargassum natans and Sargassum fluitans (Phaeophyceae) in the western North Atlantic , 1986 .

[69]  M. Tegner,et al.  Catastrophic Storms, El Ni�o, and Patch Stability in a Southern California Kelp Community , 1984, Science.

[70]  S. V. Smith,et al.  C:N:P ratios of benthic marine plants1 , 1983 .

[71]  S. V. Smith,et al.  C:N:P ratios of benthic marine plants [carbon:nitrogen:phosphorus]. , 1983 .

[72]  M. Dring,et al.  The Biology of Marine Plants , 1991 .

[73]  B. Lapointe,et al.  Experimental outdoor studies with Ulva fasciata Delile. I. Interaction of light and nitrogen on nutrient uptake, growth, and biochemical composition , 1981 .

[74]  V. J. Chapman,et al.  Mariculture of Seaweeds , 1980 .

[75]  B. H. Brinkhuis Seasonal variations in salt-marsh macroalgae photosynthesis. I. Ascophyllum nodosum ecad scorpioides , 1977 .

[76]  M. Littler,et al.  The primary productivity of marine macrophytes from a rocky intertidal community , 1974, Marine Biology.

[77]  Y. Yokohama A Comparative Study on Photosynthesis Temperature Relationships and Their Seasonal Changes in Marine Benthic Algae , 1973 .

[78]  D. Brown,et al.  INHIBITION OF RESPIRATION DURING PHOTOSYNTHESIS BY SOME ALGAE , 1967 .