VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data

This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished during the past decade. Most of these models are partly unspecified (i.e. they have unknown parameters) and nonlinear. This makes them difficult to peer with a formal statistical data analysis framework. In turn, this compromises the reproducibility of model-based empirical studies. This work exposes a software toolbox that provides generic, efficient and robust probabilistic solutions to the three problems of model-based analysis of empirical data: (i) data simulation, (ii) parameter estimation/model selection, and (iii) experimental design optimization.

[1]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[2]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[3]  Karl J. Friston,et al.  Network discovery with DCM , 2011, NeuroImage.

[4]  Kerstin Preuschoff,et al.  Optimizing Experimental Design for Comparing Models of Brain Function , 2011, PLoS Comput. Biol..

[5]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[6]  Karl J. Friston,et al.  Observing the Observer (I): Meta-Bayesian Models of Learning and Decision-Making , 2010, PloS one.

[7]  N. Daw,et al.  The cognitive neuroscience of motivation and learning , 2008 .

[8]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[9]  Paul Allen,et al.  Brain connectivity abnormalities predating the onset of psychosis: correlation with the effect of medication. , 2013, JAMA psychiatry.

[10]  Karl J. Friston,et al.  Stochastic dynamic causal modelling of fMRI data: Should we care about neural noise? , 2012, NeuroImage.

[11]  Karl J. Friston,et al.  Dysconnection in Schizophrenia: From Abnormal Synaptic Plasticity to Failures of Self-monitoring , 2009, Schizophrenia bulletin.

[12]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[13]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[14]  Karl J. Friston,et al.  Behavioral / Systems / Cognitive Striatal Prediction Error Modulates Cortical Coupling , 2010 .

[15]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[16]  Klaas E. Stephan,et al.  Dynamic causal modelling: A critical review of the biophysical and statistical foundations , 2011, NeuroImage.

[17]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[18]  C. Büchel,et al.  Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. , 1997, Cerebral cortex.

[19]  Karl J. Friston,et al.  Bayesian model selection for group studies — Revisited , 2014, NeuroImage.

[20]  Karl J. Friston,et al.  Dynamic causal modelling of anticipatory skin conductance responses , 2010, Biological Psychology.

[21]  Karl J. Friston,et al.  Comparing hemodynamic models with DCM , 2007, NeuroImage.

[22]  Karl J. Friston,et al.  Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri , 2022 .

[23]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[24]  W. Penny,et al.  Changes in Auditory Feedback Connections Determine the Severity of Speech Processing Deficits after Stroke , 2012, The Journal of Neuroscience.

[25]  Karl J. Friston,et al.  An In Vivo Assay of Synaptic Function Mediating Human Cognition , 2011, Current Biology.

[26]  J. Daunizeau,et al.  Neurocomputational account of how the human brain decides when to have a break , 2013, Proceedings of the National Academy of Sciences.

[27]  P. Dayan,et al.  tHe Cognitive neuroSCienCe of Motivation and learning , 2008 .

[28]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[29]  A. Odum,et al.  Impulsivity and cigarette smoking: delay discounting in current, never, and ex-smokers , 1999, Psychopharmacology.

[30]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[31]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Karl J. Friston,et al.  Comparing Families of Dynamic Causal Models , 2010, PLoS Comput. Biol..

[33]  Karl J. Friston,et al.  Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models , 2009, Physica D. Nonlinear phenomena.

[34]  D. Talay Numerical solution of stochastic differential equations , 1994 .

[35]  Karl J. Friston,et al.  Generalised filtering and stochastic DCM for fMRI , 2011, NeuroImage.

[36]  A. Tversky,et al.  Choices, Values, and Frames , 2000 .

[37]  Karl J. Friston,et al.  Post hoc Bayesian model selection , 2011, NeuroImage.

[38]  R. Rescorla,et al.  A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement , 1972 .

[39]  J. Stevens,et al.  Animal Intelligence , 1883, Nature.

[40]  Jay I. Myung,et al.  Optimal experimental design for model discrimination. , 2009, Psychological review.

[41]  Karl J. Friston,et al.  A Bayesian Foundation for Individual Learning Under Uncertainty , 2011, Front. Hum. Neurosci..

[42]  Karl J. Friston,et al.  Bayesian model selection for group studies , 2009, NeuroImage.

[43]  L. Festinger,et al.  A Theory of Cognitive Dissonance , 2017 .