On the stability of quantum holonomic gates

We provide a unified geometrical description for analyzing the stability of holonomic quantum gates in the presence of imprecise driving controls (parametric noise). We consider the situation in which these fluctuations do not affect the adiabatic evolution but can reduce the logical gate performance. Using the intrinsic geometric properties of the holonomic gates, we show under which conditions of the noise's correlation time and strength the fluctuations in the driving field cancel out. In this way, we provide theoretical support for previous numerical simulations. We also briefly comment on the error due to the mismatch between the real and the nominal time of the period of the driving fields and show that it can be reduced by suitably increasing the adiabatic time.

[1]  D. M. Tong,et al.  Non-adiabatic holonomic quantum computation , 2011, 1107.5127.

[2]  J. Pekola,et al.  Decoherence of adiabatically steered quantum systems , 2010, 1007.2347.

[3]  J P Pekola,et al.  Decoherence in adiabatic quantum evolution: application to cooper pair pumping. , 2010, Physical review letters.

[4]  Shi-Liang Zhu,et al.  Geometric quantum gates that are robust against stochastic control errors , 2005 .

[5]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[6]  D A Lidar,et al.  Holonomic quantum computation in decoherence-free subspaces. , 2005, Physical review letters.

[7]  Paolo Zanardi,et al.  QUANTUM HOLONOMIES FOR QUANTUM COMPUTING , 2000, quant-ph/0007110.

[8]  Robert S. Whitney,et al.  Suppression of nonadiabatic phases by a non-Markovian environment: Easier observation of Berry phases , 2008, 0806.4897.

[9]  Daniel A Lidar,et al.  Fault-tolerant holonomic quantum computation. , 2009, Physical review letters.

[10]  Daniel Loss,et al.  Holonomic quantum computation with electron spins in quantum dots , 2009, 0908.2800.

[11]  D. M. Tong,et al.  Robustness of nonadiabatic holonomic gates , 2012, 1204.5144.

[12]  A. A. Abdumalikov,et al.  Geometric phase and nonadiabatic effects in an electronic harmonic oscillator. , 2011, Physical review letters.

[13]  Holonomic quantum computation with neutral atoms , 2002, quant-ph/0204030.

[14]  John Calsamiglia,et al.  Adiabatic markovian dynamics. , 2010, Physical review letters.

[15]  Geometric nature of the environment-induced Berry phase and geometric dephasing. , 2004, Physical review letters.

[16]  Paolo Zanardi,et al.  Holonomic quantum computation , 1999 .

[17]  Klaas Bergmann,et al.  LASER-DRIVEN POPULATION TRANSFER IN FOUR-LEVEL ATOMS : CONSEQUENCES OF NON-ABELIAN GEOMETRICAL ADIABATIC PHASE FACTORS , 1999 .

[18]  Jens Siewert,et al.  Non-Abelian holonomies, charge pumping, and quantum computation with Josephson junctions. , 2003, Physical review letters.

[19]  Robust gates for holonomic quantum computation , 2005, quant-ph/0510226.

[20]  Fausto Rossi,et al.  Semiconductor-based geometrical quantum gates , 2002, quant-ph/0207019.

[21]  Gabriele De Chiara,et al.  Berry phase for a spin 1/2 particle in a classical fluctuating field. , 2003, Physical review letters.

[22]  Paolo Zanardi,et al.  Robustness of non-Abelian holonomic quantum gates against parametric noise , 2004 .

[23]  Igor Aharonovich,et al.  Diamond-based single-photon emitters , 2011 .

[24]  A. Shnirman,et al.  Geometric quantum gates with superconducting qubits , 2011, 1104.0159.

[25]  Noncyclic geometric changes of quantum states , 2005, quant-ph/0512045.

[26]  J. Pekola,et al.  Experimental determination of the berry phase in a superconducting charge pump. , 2007, Physical review letters.

[27]  C. P. Sun,et al.  Holonomic quantum computation using rf superconducting quantum interference devices coupled through a microwave cavity , 2005 .

[28]  R. J. Schoelkopf,et al.  Observation of Berry's Phase in a Solid-State Qubit , 2007, Science.

[29]  J I Cirac,et al.  Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.

[30]  Berry phase in a nonisolated system. , 2002, Physical review letters.

[31]  Geometric phase in open systems. , 2003, Physical review letters.

[32]  Erik Lucero,et al.  Emulation of a Quantum Spin with a Superconducting Phase Qudit , 2009, Science.

[33]  Johan Åberg,et al.  Adiabatic approximation for weakly open systems , 2005 .

[34]  N. Zanghí,et al.  Environmental noise reduction for holonomic quantum gates , 2007, 0704.0376.