An Atomic Model of the Interferon-β Enhanceosome

[1]  Estanislao Nistal-Villán,et al.  Structure of IRF-3 bound to the PRDIII-I regulatory element of the human interferon-beta enhancer. , 2007, Molecular cell.

[2]  Cheng Liu,et al.  Crystal structure of IRF-3 in complex with CBP. , 2005, Structure.

[3]  Hideo Negishi,et al.  IRF-7 is the master regulator of type-I interferon-dependent immune responses , 2005, Nature.

[4]  David N Arnosti,et al.  Transcriptional enhancers: Intelligent enhanceosomes or flexible billboards? , 2005, Journal of cellular biochemistry.

[5]  M. Kreitman,et al.  Functional Evolution of a cis-Regulatory Module , 2005, PLoS biology.

[6]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[7]  Tom Maniatis,et al.  Crystal structure of ATF‐2/c‐Jun and IRF‐3 bound to the interferon‐β enhancer , 2004 .

[8]  S. Harrison,et al.  Crystal structure of ATF-2/c-Jun and IRF-3 bound to the interferon-beta enhancer. , 2004, The EMBO journal.

[9]  W. Olson,et al.  3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. , 2003, Nucleic acids research.

[10]  A. Brass,et al.  Crystal structure of PU.1/IRF-4/DNA ternary complex. , 2002, Molecular cell.

[11]  P. Sigler,et al.  The X-ray Crystal Structure of the NF-κB p50·p65 Heterodimer Bound to the Interferon β-κB Site* , 2002, The Journal of Biological Chemistry.

[12]  G. Ghosh,et al.  The κB DNA Sequence from the HIV Long Terminal Repeat Functions as an Allosteric Regulator of HIV Transcription* , 2002, The Journal of Biological Chemistry.

[13]  J. Hiscott,et al.  Preferential binding sites for interferon regulatory factors 3 and 7 involved in interferon-A gene transcription. , 2002, Journal of molecular biology.

[14]  A. Aggarwal,et al.  Structure of NF-κB p50/p65 Heterodimer Bound to the PRDII DNA Element from the Interferon-β Promoter , 2002 .

[15]  A. Aggarwal,et al.  Structure of NF-kappaB p50/p65 heterodimer bound to the PRDII DNA element from the interferon-beta promoter. , 2002, Structure.

[16]  M. Ptashne,et al.  Genes and Signals , 2001 .

[17]  Dimitris Thanos,et al.  Nucleosome Sliding via TBP DNA Binding In Vivo , 2001, Cell.

[18]  E. Fraenkel,et al.  A small domain of CBP/p300 binds diverse proteins: solution structure and functional studies. , 2001, Molecular cell.

[19]  Kevin Struhl,et al.  A Paradigm for Precision , 2001, Science.

[20]  S. Lomvardas,et al.  Coordination of a transcriptional switch by HMGI(Y) acetylation. , 2001, Science.

[21]  J. O. Thomas,et al.  HMG1 and 2: architectural DNA-binding proteins. , 2001, Biochemical Society transactions.

[22]  K. Struhl,et al.  Gene regulation. A paradigm for precision. , 2001, Science.

[23]  Dimitris Thanos,et al.  Ordered Recruitment of Chromatin Modifying and General Transcription Factors to the IFN-β Promoter , 2000, Cell.

[24]  T. Taniguchi,et al.  Distinct and Essential Roles of Transcription Factors IRF-3 and IRF-7 in Response to Viruses for IFN-α/β Gene Induction , 2000 .

[25]  J. Hiscott,et al.  Selective DNA Binding and Association with the CREB Binding Protein Coactivator Contribute to Differential Activation of Alpha/Beta Interferon Genes by Interferon Regulatory Factors 3 and 7 , 2000, Molecular and Cellular Biology.

[26]  Tom Maniatis,et al.  Assembly of a Functional Beta Interferon Enhanceosome Is Dependent on ATF-2–c-jun Heterodimer Orientation , 2000, Molecular and Cellular Biology.

[27]  N. Patel,et al.  Evidence for stabilizing selection in a eukaryotic enhancer element , 2000, Nature.

[28]  T. Taniguchi,et al.  Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. , 2000, Immunity.

[29]  G. Ghosh,et al.  Regulation of DNA binding by Rel/NF-κB transcription factors: structural views , 1999, Oncogene.

[30]  K. Senger,et al.  Mechanism by which the IFN-beta enhanceosome activates transcription. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  T. Taniguchi,et al.  Crystal structure of an IRF‐DNA complex reveals novel DNA recognition and cooperative binding to a tandem repeat of core sequences , 1999, The EMBO journal.

[32]  H. Kwon,et al.  Interferon regulatory factors: the next generation. , 1999, Gene.

[33]  S. Lomvardas,et al.  The IFN-beta enhancer: a paradigm for understanding activation and repression of inducible gene expression. , 1999, Cold Spring Harbor symposia on quantitative biology.

[34]  F. E. Chen,et al.  Regulation of DNA binding by Rel/NF-kappaB transcription factors: structural views. , 1999, Oncogene.

[35]  T. Taniguchi,et al.  Positive feedback regulation of type I IFN genes by the IFN‐inducible transcription factor IRF‐7 , 1998, FEBS letters.

[36]  D. Levy,et al.  Differential viral induction of distinct interferon‐α genes by positive feedback through interferon regulatory factor‐7 , 1998, The EMBO journal.

[37]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[38]  J. Hiscott,et al.  Virus-Dependent Phosphorylation of the IRF-3 Transcription Factor Regulates Nuclear Translocation, Transactivation Potential, and Proteasome-Mediated Degradation , 1998, Molecular and Cellular Biology.

[39]  S. Harrison,et al.  Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA , 1998, Nature.

[40]  T. Maniatis,et al.  Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. , 1998, Molecular cell.

[41]  G. Ghosh,et al.  Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA , 1998, Nature.

[42]  N. Jones,et al.  p300 and ATF-2 are components of the DRF complex, which regulates retinoic acid- and E1A-mediated transcription of the c-jun gene in F9 cells. , 1998, Genes & development.

[43]  Pei-ji Chen,et al.  An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China , 1998, Nature.

[44]  A. Aggarwal,et al.  Structure of IRF-1 with bound DNA reveals determinants of interferon regulation , 1998, Nature.

[45]  J. V. Falvo,et al.  Structure and Function of the Interferon-β Enhanceosome , 1998 .

[46]  M. Merika,et al.  Recruitment of CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of transcription. , 1998, Molecular cell.

[47]  J. Thornton,et al.  NUCPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions. , 1997, Nucleic acids research.

[48]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[49]  Jeffrey R. Huth,et al.  The solution structure of an HMG-I(Y)–DNA complex defines a new architectural minor groove binding motif , 1997, Nature Structural Biology.

[50]  C. Pabo,et al.  Oct-1 POU domain-DNA interactions: cooperative binding of isolated subdomains and effects of covalent linkage. , 1996, Genes & development.

[51]  P. Sigler,et al.  Structure of NF-κB p50 homodimer bound to a κB site , 1998, Nature.

[52]  T. Maniatis,et al.  Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome , 1995, Cell.

[53]  Dimitris Thanos,et al.  Reversal of intrinsic DNA bends in the IFNβ gene enhancer by transcription factors and the architectural protein HMG I(Y) , 1995, Cell.

[54]  Andrew J. Bannister,et al.  Stimulation of c-Jun activity by CBP: c-Jun residues Ser63/73 are required for CBP induced stimulation in vivo and CBP binding in vitro. , 1995, Oncogene.

[55]  P B Sigler,et al.  Structure of NF-kappa B p50 homodimer bound to a kappa B site. , 1995, Nature.

[56]  S. Harrison,et al.  Structure of the NF-kappa B p50 homodimer bound to DNA. , 1995, Nature.

[57]  T. Maniatis,et al.  The high mobility group protein HMG I(Y) is an essential structural component of a virus-inducible enhancer complex. , 1993, Cold Spring Harbor symposia on quantitative biology.

[58]  Dimitris Thanos,et al.  The High Mobility Group protein HMG I(Y) is required for NF-κB-dependent virus induction of the human IFN-β gene , 1992, Cell.

[59]  T. Maniatis,et al.  An ATF/CREB binding site is required for virus induction of the human interferon beta gene [corrected]. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[60]  T. Maniatis,et al.  The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. , 1992, Cell.

[61]  M. Levine,et al.  Transcriptional regulation of a pair-rule stripe in Drosophila. , 1991, Genes & development.

[62]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[63]  T. Taniguchi,et al.  Evidence for a nuclear factor(s), IRF‐1, mediating induction and silencing properties to human IFN‐beta gene regulatory elements. , 1988, The EMBO journal.

[64]  R Lavery,et al.  The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. , 1988, Journal of biomolecular structure & dynamics.

[65]  T. Maniatis,et al.  Overlapping positive and negative regulatory domains of the human beta-interferon gene. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[66]  A Correspondent in Cell Biology,et al.  Gene Regulation , 1967, Nature.