Moderate temperature deposition of RF magnetron sputtered SnO2-based electron transporting layer for triple cation perovskite solar cells

[1]  S. Ahzi,et al.  Study of wide bandgap SnOx thin films grown by a reactive magnetron sputtering via a two-step method , 2022, Scientific Reports.

[2]  J. Noh,et al.  Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24% , 2021 .

[3]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[4]  Timothy W. Jones,et al.  Inorganic Electron Transport Materials in Perovskite Solar Cells , 2020, Advanced Functional Materials.

[5]  Bingqiang Cao,et al.  Combustion procedure deposited SnO2 electron transport layers for high efficient perovskite solar cells , 2020 .

[6]  A. Kermanpur,et al.  Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: Roles of the interfacial layers , 2020 .

[7]  A. Hagfeldt,et al.  Highly efficient, stable and hysteresis‒less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer , 2020 .

[8]  T. Luo,et al.  Printable CsPbI3 Perovskite Solar Cells with PCE of 19% via an Additive Strategy , 2020, Advanced materials.

[9]  Hanmin Tian,et al.  Efficient planar heterojunction perovskite solar cells with enhanced FTO/SnO2 interface electronic coupling , 2020 .

[10]  Yongli Gao,et al.  Fully Doctor-bladed efficient perovskite solar cells in ambient condition via composition engineering , 2020 .

[11]  W. Jaegermann,et al.  Analytical Study of Solution‐Processed Tin Oxide as Electron Transport Layer in Printed Perovskite Solar Cells , 2020, Advanced Materials Technologies.

[12]  K. Mahmood,et al.  Electrospray deposited MoS2 nanosheets as an electron transporting material for high efficiency and stable perovskite solar cells , 2020, Solar Energy.

[13]  James E. Bishop,et al.  Rapid Scalable Processing of Tin Oxide Transport Layers for Perovskite Solar Cells , 2020, ACS applied energy materials.

[14]  F. Brunetti,et al.  Automated Scalable Spray Coating of SnO 2 for the Fabrication of Low‐Temperature Perovskite Solar Cells and Modules , 2020 .

[15]  Y. Song,et al.  Dopant‐Free, Amorphous–Crystalline Heterophase SnO2 Electron Transport Bilayer Enables >20% Efficiency in Triple‐Cation Perovskite Solar Cells , 2020, Advanced Functional Materials.

[16]  S. Ashhab,et al.  Unusual Bimodal Photovoltaic Performance of Perovskite Solar Cells at Real-World Operating Temperatures , 2020 .

[17]  Houcheng Zhang,et al.  Aged sol-gel solution-processed texture tin oxide for high-efficient perovskite solar cells , 2020, Nanotechnology.

[18]  Hongwei Zhu,et al.  Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency , 2020, Advanced materials.

[19]  Qinghong Zhang,et al.  Spray-coated monodispersed SnO2 microsphere films as scaffold layers for efficient mesoscopic perovskite solar cells , 2020 .

[20]  Keqing Huang,et al.  Flexible Planar Heterojunction Perovskite Solar Cells Fabricated via Sequential Roll‐to‐Roll Microgravure Printing and Slot‐Die Coating Deposition , 2020, Solar RRL.

[21]  Dongmei Li,et al.  Plasma-enhanced atomic-layer-deposited gallium nitride as an electron transport layer for planar perovskite solar cells , 2019, Journal of Materials Chemistry A.

[22]  Tongle Bu,et al.  Efficient Planar Perovskite Solar Cells via a Sputtered Cathode , 2019, Solar RRL.

[23]  Z. Ren,et al.  Facile synthesis of composite tin oxide nanostructures for high-performance planar perovskite solar cells , 2019, Nano Energy.

[24]  Z. Fan,et al.  Room-Temperature Sputtered SnO2 as Robust Electron Transport Layer for Air-Stable and Efficient Perovskite Solar Cells on Rigid and Flexible Substrates , 2019, Scientific Reports.

[25]  Jing Li,et al.  High performance perovskite sub-module with sputtered SnO2 electron transport layer , 2019, Solar Energy.

[26]  Hyunjung Shin,et al.  Atomic layer deposition of a SnO2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3. , 2019, Chemical communications.

[27]  W. Que,et al.  Vacuum thermal-evaporated SnO2 as uniform electron transport layer and novel management of perovskite intermediates for efficient and stable planar perovskite solar cells , 2019, Organic Electronics.

[28]  Nurul Aida Mohamed,et al.  Eliminating oxygen vacancies in SnO2 films via aerosol-assisted chemical vapour deposition for perovskite solar cells and photoelectrochemical cells , 2019, Journal of Alloys and Compounds.

[29]  J. Xiong,et al.  Composition and Energy Band–Modified Commercial FTO Substrate for In Situ Formed Highly Efficient Electron Transport Layer in Planar Perovskite Solar Cells , 2019, Advanced Functional Materials.

[30]  S. J. Pearton,et al.  Valence and conduction band offsets for sputtered AZO and ITO on (010) (Al0.14Ga0.86)2O3 , 2019, Semiconductor Science and Technology.

[31]  Sisi He,et al.  Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer , 2018, Advanced Functional Materials.

[32]  Faisal Nawaz,et al.  Low-temperature electrospray-processed SnO2 nanosheets as an electron transporting layer for stable and high-efficiency perovskite solar cells. , 2018, Journal of colloid and interface science.

[33]  Weijian Chen,et al.  Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module , 2018, Nature Communications.

[34]  Jie Tang,et al.  High-performance planar perovskite solar cells based on low-temperature solution-processed well-crystalline SnO2 nanorods electron-transporting layers , 2018, Chemical Engineering Journal.

[35]  J. Bell,et al.  Tuning the Amount of Oxygen Vacancies in Sputter-Deposited SnOx films for Enhancing the Performance of Perovskite Solar Cells. , 2018, ChemSusChem.

[36]  Dong Yang,et al.  High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 , 2018, Nature Communications.

[37]  Martin A. Green,et al.  Solar cell efficiency tables (version 52) , 2018, Progress in Photovoltaics: Research and Applications.

[38]  Chang-jiu Li,et al.  Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules , 2018 .

[39]  Abdullah M. Asiri,et al.  Efficient Planar Perovskite Solar Cells Using Passivated Tin Oxide as an Electron Transport Layer , 2018, Advanced science.

[40]  H. Tao,et al.  Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells , 2018 .

[41]  Yongli Gao,et al.  Efficient and stable planar hole-transport-material-free perovskite solar cells using low temperature processed SnO2 as electron transport material , 2018 .

[42]  Kai Zhu,et al.  Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization , 2018 .

[43]  L. Qiu,et al.  Engineering Interface Structure to Improve Efficiency and Stability of Organometal Halide Perovskite Solar Cells. , 2017, The journal of physical chemistry. B.

[44]  Philip Schulz,et al.  Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability , 2018 .

[45]  Michael Grätzel,et al.  Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells , 2018, Nature Energy.

[46]  Matthew R. Leyden,et al.  Combination of Hybrid CVD and Cation Exchange for Upscaling Cs‐Substituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability , 2018 .

[47]  Seonhee Lee,et al.  Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2% , 2017 .

[48]  B. Gorman,et al.  Junction Quality of SnO2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling. , 2017, ACS applied materials & interfaces.

[49]  Junjie Ma,et al.  Highly Efficient and Stable Planar Perovskite Solar Cells With Large‐Scale Manufacture of E‐Beam Evaporated SnO2 Toward Commercialization , 2017 .

[50]  Y. Qi,et al.  Advances and challenges to the commercialization of organic–inorganic halide perovskite solar cell technology , 2017 .

[51]  Xudong Yang,et al.  A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules , 2017, Nature.

[52]  Xingzhong Zhao,et al.  Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells , 2017 .

[53]  Michael Schmidt,et al.  Laser-Patterning Engineering for Perovskite Solar Modules With 95% Aperture Ratio , 2017, IEEE Journal of Photovoltaics.

[54]  G. Fang,et al.  Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: Suppressed hysteresis and flexible photovoltaic application , 2017 .

[55]  A. Jen,et al.  Low-temperature electrodeposited crystalline SnO2 as an efficient electron-transporting layer for conventional perovskite solar cells , 2017 .

[56]  M. Mehran,et al.  Current status of electron transport layers in perovskite solar cells: materials and properties , 2017 .

[57]  T. Oku,et al.  Fabrication of Perovskite-Type Photovoltaic Devices with Polysilane Hole Transport Layers , 2017 .

[58]  L. Kavan,et al.  Ultrathin Buffer Layers of SnO2 by Atomic Layer Deposition: Perfect Blocking Function and Thermal Stability , 2017 .

[59]  Zhao Zhiguo,et al.  Recent progress in stability of perovskite solar cells , 2017 .

[60]  Seong Sik Shin,et al.  Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cells , 2017 .

[61]  Y. Qi,et al.  Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour , 2016, Nature Energy.

[62]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[63]  A. Zakhidov Role of Interface in Stability of Perovskite Solar Cells. , 2016 .

[64]  Anders Hagfeldt,et al.  Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide , 2016 .

[65]  Anders Hagfeldt,et al.  Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.

[66]  P. Pikhitsa,et al.  Trapped charge-driven degradation of perovskite solar cells , 2016, Nature Communications.

[67]  Steffen Meyer,et al.  Stability Comparison of Perovskite Solar Cells Based on Zinc Oxide and Titania on Polymer Substrates. , 2016, ChemSusChem.

[68]  Bo Chen,et al.  2D Transition‐Metal‐Dichalcogenide‐Nanosheet‐Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions , 2016, Advanced materials.

[69]  G. Fang,et al.  Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells , 2015 .

[70]  Y. Qi,et al.  Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditions , 2015 .

[71]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[72]  Junwang Tang,et al.  Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells , 2015 .

[73]  Jiangtian Li,et al.  Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review , 2015 .

[74]  R. Marschall,et al.  Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity , 2014 .

[75]  Vladan Stevanović,et al.  Assessing capability of semiconductors to split water using ionization potentials and electron affinities only. , 2014, Physical chemistry chemical physics : PCCP.

[76]  Lili Wu,et al.  Preparation and Properties of SnO2 Film Deposited by Magnetron Sputtering , 2012 .

[77]  Alex K.-Y. Jen,et al.  Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells , 2012 .

[78]  M. Mehmood,et al.  Characteristics of electron beam evaporated nanocrystalline SnO2 thin films annealed in air , 2010 .

[79]  Hany Aziz,et al.  Surface electronic structure of plasma-treated indium tin oxides , 2001 .

[80]  R. M. Mayer Materials and properties , 1993 .

[81]  Robert C. Wolpert,et al.  A Review of the , 1985 .