Manifestation of the van der Waals surface interaction in the spontaneous emission of atoms into an optical nanofiber

We study the spontaneous emission of atoms near an optical nanofiber and analyze the coupling efficiency of the spontaneous emission into a nanofiber. We also investigate the influence of the van der Waals interaction of atoms with the surface of the optical nanofiber on the spectrum of coupled light. Using, as an example, 85Rb atoms we show that the van der Waals interaction may considerably extend the red wing of the spontaneous emission line and, accordingly, produce a well-defined asymmetry of the spontaneous emission spectrum coupled into an optical nanofiber.

[1]  Thomas Søndergaard,et al.  General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier , 2001 .

[2]  K. Hakuta,et al.  Single atoms on an optical nanofibre , 2007, 0709.2749.

[3]  G. Rahmat,et al.  Van der Waals-induced spectral distortions in selective-reflection spectroscopy of Cs vapor: the strong atom-surface interaction regime. , 1991, Optics letters.

[4]  Bloch,et al.  van der Waals interactions between excited-state atoms and dispersive dielectric surfaces. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[5]  Kohzo Hakuta,et al.  Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes , 2005 .

[6]  E. M. Lifshitz,et al.  The general theory of van der Waals forces , 1961 .

[7]  Fam Le Kien,et al.  Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence. , 2007, Optics express.

[8]  G. Stewart Optical Waveguide Theory , 1983, Handbook of Laser Technology and Applications.

[9]  V. Klimov Spontaneous emission rate of an excited atom placed near a nanofiber (17 pages) , 2004 .

[10]  M. Oriá,et al.  Spectral Observation of Surface-Induced Van der Waals Attraction on Atomic Vapour , 1991 .

[11]  M. Scully,et al.  The Quantum Theory of Light , 1974 .

[12]  Spruch,et al.  Retarded Casimir interaction in the asymptotic domain of an electron and a dielectric wall. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[13]  B. Shortt,et al.  Heat-and-pull rig for fiber taper fabrication , 2006, physics/0604049.

[14]  Wonho Jhe,et al.  Cavity quantum electrodynamics for a cylinder: Inside a hollow dielectric and near a solid dielectric cylinder , 1997 .

[15]  V. Minogin,et al.  Density-matrix approach to dynamics of multilevel atoms in laser fields , 2002 .

[16]  D Meschede,et al.  Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions. , 2007, Physical review letters.

[17]  Cai,et al.  Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system , 2000, Physical review letters.

[18]  K. Hakuta,et al.  Spontaneous radiative decay of translational levels of an atom near a dielectric surface , 2007 .

[19]  S. Stenholm,et al.  Laser cooling and trapping , 1988 .