An improved particle swarm optimization based on the reinforcement of the population initialization phase by scrambled Halton sequence

AbstractThe use of meta-heuristic methods for solving nonlinear engineering and optimization problems is one of the paramount topics that attracted the attention of the researchers. Particle swarm ...

[1]  Seyedali Mirjalili,et al.  Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems , 2015, Neural Computing and Applications.

[2]  Seyed Mohammad Mirjalili,et al.  The Ant Lion Optimizer , 2015, Adv. Eng. Softw..

[3]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[4]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[5]  Ahmad Bagheri,et al.  HEPSO: High exploration particle swarm optimization , 2014, Inf. Sci..

[6]  E. Sandgren,et al.  Nonlinear Integer and Discrete Programming in Mechanical Design Optimization , 1990 .

[7]  Wenjian Luo,et al.  Differential evolution with dynamic stochastic selection for constrained optimization , 2008, Inf. Sci..

[8]  Seyed Mohammad Mirjalili,et al.  Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm , 2015, Knowl. Based Syst..

[9]  Tarun Kumar Sharma,et al.  Improved Local Search in Artificial Bee Colony using Golden Section Search , 2012, ArXiv.

[10]  Q. H. Wu,et al.  A heuristic particle swarm optimizer for optimization of pin connected structures , 2007 .

[11]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[12]  Harish Garg,et al.  A hybrid PSO-GA algorithm for constrained optimization problems , 2016, Appl. Math. Comput..

[13]  Min-Yuan Cheng,et al.  Symbiotic Organisms Search: A new metaheuristic optimization algorithm , 2014 .

[14]  Ardeshir Bahreininejad,et al.  Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems , 2013, Appl. Soft Comput..

[15]  Andrew Lewis,et al.  Autonomous Particles Groups for Particle Swarm Optimization , 2014 .

[16]  A. Bagheri,et al.  Interval Search with Quadratic Interpolation and Stable Deviation Quantum-Behaved Particle Swarm Optimization (IQS-QPSO) , 2019, The International Journal of Multiphysics.

[17]  A. Gandomi Interior search algorithm (ISA): a novel approach for global optimization. , 2014, ISA transactions.

[18]  Yong Wang,et al.  Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization , 2010, Appl. Soft Comput..

[19]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[20]  Hirad Abghari,et al.  Application of PSO algorithm in short-term optimization of reservoir operation , 2016, Environmental Monitoring and Assessment.

[21]  Tapabrata Ray,et al.  ENGINEERING DESIGN OPTIMIZATION USING A SWARM WITH AN INTELLIGENT INFORMATION SHARING AMONG INDIVIDUALS , 2001 .

[22]  Xiaojun Wu,et al.  Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point , 2011, Appl. Math. Comput..

[23]  Amir Hossein Gandomi,et al.  Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems , 2011, Engineering with Computers.

[24]  S. SreeRanjiniK.,et al.  Expert Systems With Applications , 2022 .

[25]  Guangqing Bao,et al.  Particle swarm optimization algorithm with asymmetric time varying acceleration coefficients , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[26]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[27]  K. M. Ragsdell,et al.  Optimal Design of a Class of Welded Structures Using Geometric Programming , 1976 .

[28]  Michael N. Vrahatis,et al.  Particle Swarm Optimization and Intelligence: Advances and Applications , 2010 .

[29]  Ching-Yuen Chan,et al.  An opposition-based chaotic GA/PSO hybrid algorithm and its application in circle detection , 2012, Comput. Math. Appl..

[30]  Zhenbo Li,et al.  Study on hybrid PS-ACO algorithm , 2011, Applied Intelligence.

[31]  Xin-She Yang,et al.  Engineering Optimization: An Introduction with Metaheuristic Applications , 2010 .

[32]  G. G. Wang,et al.  Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points , 2003 .

[33]  Carlos A. Coello Coello,et al.  Engineering optimization using simple evolutionary algorithm , 2003, Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence.

[34]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[35]  Jitendriya Ku Satapathy,et al.  Time delay approach for PSS and SSSC based coordinated controller design using hybrid PSO–GSA algorithm , 2015 .

[36]  Debashis Chatterjee,et al.  An application of PSO technique for harmonic elimination in a PWM inverter , 2009, Appl. Soft Comput..

[37]  Farid Najafi,et al.  PSOSCALF: A new hybrid PSO based on Sine Cosine Algorithm and Levy flight for solving optimization problems , 2018, Appl. Soft Comput..

[38]  A. Jamali,et al.  A new optimization algorithm based on a combination of particle swarm optimization, convergence and divergence operators for single-objective and multi-objective problems , 2012 .

[39]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[40]  Jung-Fa Tsai,et al.  Global optimization of nonlinear fractional programming problems in engineering design , 2005 .

[41]  Zhihua Cui,et al.  An Improved PSO with Time-Varying Accelerator Coefficients , 2008, 2008 Eighth International Conference on Intelligent Systems Design and Applications.

[42]  Zhang Chao,et al.  Study on Application of PSO with Time Window for User Recommendation in Research Social Networks , 2017, ICBIM 2017.

[43]  Zengqiang Chen,et al.  New Chaotic PSO-Based Neural Network Predictive Control for Nonlinear Process , 2007, IEEE Transactions on Neural Networks.

[44]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .

[45]  Peter Hellekalek,et al.  Regularities in the distribution of special sequences , 1984 .

[46]  MirjaliliSeyedali Moth-flame optimization algorithm , 2015 .

[47]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[48]  W. J. Whiten,et al.  Computational investigations of low-discrepancy sequences , 1997, TOMS.

[49]  Ling Wang,et al.  An effective co-evolutionary particle swarm optimization for constrained engineering design problems , 2007, Eng. Appl. Artif. Intell..

[50]  Seyed Mohammad Mirjalili,et al.  Multi-Verse Optimizer: a nature-inspired algorithm for global optimization , 2015, Neural Computing and Applications.

[51]  Zhang Dingxue,et al.  A Modified Particle Swarm Optimization with an Adaptive Acceleration Coefficients , 2009, 2009 Asia-Pacific Conference on Information Processing.

[52]  E. Braaten,et al.  An Improved Low-Discrepancy Sequence for Multidimensional Quasi-Monte Carlo Integration , 1979 .

[53]  Carlos A. Coello Coello,et al.  An empirical study about the usefulness of evolution strategies to solve constrained optimization problems , 2008, Int. J. Gen. Syst..

[54]  Hongmei Chi,et al.  Particle Swarm Optimization Simulation via Optimal Halton Sequences , 2016, ICCS.

[55]  Siamak Talatahari,et al.  An improved ant colony optimization for constrained engineering design problems , 2010 .

[56]  Tapabrata Ray,et al.  A socio-behavioural simulation model for engineering design optimization , 2002 .

[57]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[58]  Jerome Spanier,et al.  Quasi-Random Methods for Estimating Integrals Using Relatively Small Samples , 1994, SIAM Rev..

[59]  A. Ghanbarzadeh,et al.  Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand est , 2010 .

[60]  S. Mirjalili,et al.  A new hybrid PSOGSA algorithm for function optimization , 2010, 2010 International Conference on Computer and Information Application.

[61]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[62]  Kwok-wing Chau,et al.  Application of a PSO-based neural network in analysis of outcomes of construction claims , 2007 .

[63]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[64]  Li Chen,et al.  TAGUCHI-AIDED SEARCH METHOD FOR DESIGN OPTIMIZATION OF ENGINEERING SYSTEMS , 1998 .

[65]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[66]  Leandro dos Santos Coelho,et al.  Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problems , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[67]  Kwok-Wo Wong,et al.  An improved particle swarm optimization algorithm combined with piecewise linear chaotic map , 2007, Appl. Math. Comput..

[68]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[69]  A. Kaveh,et al.  A new meta-heuristic method: Ray Optimization , 2012 .