Geometry of nonholonomic systems

Nonholonomic motion planning is best understood with some knowledge of the underlying geometry. In this chapter, we first introduce in Section 1 the basic notions of the geometry associated to control systems without drift. In the following sections, we present a detailed study of an example, the car with n trailers, then some general results on polynomial systems, which can be used to bound the complexity of the decision problem and of the motion planning for these systems.

[1]  Wei-Liang Chow Über Systeme von liearren partiellen Differentialgleichungen erster Ordnung , 1940 .

[2]  T. Nagano Linear differential systems with singularities and an application to transitive Lie algebras , 1966 .

[3]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[4]  C. Godbillon Géométrie différentielle et mécanique analytique , 1969 .

[5]  A. Seidenberg On the length of a Hilbert ascending chain , 1971 .

[6]  H. Sussmann Orbits of families of vector fields and integrability of distributions , 1973 .

[7]  H. Sussmann An extension of a theorem of Nagano on transitive Lie algebras , 1974 .

[8]  P. Stefan Accessible Sets, Orbits, and Foliations with Singularities , 1974 .

[9]  R. Goodman Nilpotent Lie Groups , 1976 .

[10]  R. Gamkrelidze,et al.  THE EXPONENTIAL REPRESENTATION OF FLOWS AND THE CHRONOLOGICAL CALCULUS , 1979 .

[11]  R. Brockett Control Theory and Singular Riemannian Geometry , 1982 .

[12]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[13]  E. Stein,et al.  Balls and metrics defined by vector fields I: Basic properties , 1985 .

[14]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[15]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[16]  Eduardo Sontag Some complexity questions regarding controllability , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[17]  Dima Grigoriev,et al.  Complexity of Deciding Tarski Algebra , 1988, J. Symb. Comput..

[18]  D. Grigor'ev Complexity of deciding Tarski algebra , 1988 .

[19]  Y. Nesterenko New Advances in Transcendence Theory: Estimates for the number of zeros of certain functions , 1988 .

[20]  Joos Heintz,et al.  Sur la complexité du principe de Tarski-Seidenberg , 1989 .

[21]  Henry Hermes,et al.  Nilpotent and High-Order Approximations of Vector Field Systems , 1991, SIAM Rev..

[22]  J. Laumond Controllability of a multibody mobile robot , 1991 .

[23]  M. Fliess,et al.  On Differentially Flat Nonlinear Systems , 1992 .

[24]  J. Laumond,et al.  NILPOTENT INFINITESIMAL APPROXIMATIONS TO A CONTROL LIE ALGEBRA , 1992 .

[25]  Ole Jakob Sørdalen,et al.  Conversion of the kinematics of a car with n trailers into a chained form , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[26]  Jean-Paul Laumond,et al.  Singularities and Topological Aspects in Nonholonomic Motion Planning , 1993 .

[27]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[28]  J. Risler,et al.  The maximum of the degree of nonholonomy for the car with n trailers , 1994 .

[29]  A. Bellaïche The tangent space in sub-riemannian geometry , 1994 .

[30]  O. J. Sørdalen On the global degree of nonholonomy of a car with N trailers , 1994 .

[31]  A. Gabrielov,et al.  ORDRE DE CONTACT DE COURBES INTEGRALES DU PLAN , 1994 .

[32]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[33]  A. Gabrielov Multiplicities of zeroes of polynomials on trajectories of polynomial vector fields and bounds on degree of nonholonomy , 1995 .

[34]  F. Jean The car with N Trailers : characterization of the singular configurations , 1996 .

[35]  Jean-Jacques Risler A Bound for the Degree of Nonholonomy in the Plane , 1996, Theor. Comput. Sci..

[36]  M. Gromov Carnot-Carathéodory spaces seen from within , 1996 .

[37]  Jean-Jacques Risler,et al.  Nonholonomic Systems: Controllability and Complexity , 1996, Theor. Comput. Sci..

[38]  A. Gabrielov Multiplicity of a zero of an analytic function on a trajectory of a vector field , 1997, math/9702229.

[39]  F. Jean,et al.  Multiplicity of polynomials on trajectories of polynomial vector fields in $C^3$ , 1998 .