On the ubiquity of certain total type structures

It is an empirical observation arising from the study of higher type computability that a wide range of approaches to defining a class of (hereditarily) total functionals over ℕ leads in practice to a relatively small handful of distinct type structures. Among these are the type structure C of KleeneKreisel continuous functionals, its effective substructure Ceff and the type structure HEO of the hereditarily effective operations. However, the proofs of the relevant equivalences are often non-trivial, and it is not immediately clear why these particular type structures should arise so ubiquitously. In this paper we present some new results that go some way towards explaining this phenomenon. Our results show that a large class of extensional collapse constructions always give rise to C, Ceff or HEO (as appropriate). We obtain versions of our results for both the standard and modified extensional collapse constructions. The proofs make essential use of a technique due to Normann. Many new results, as well as some previously known ones, can be obtained as instances of our theorems, but more importantly, the proofs apply uniformly to a whole family of constructions, and provide strong evidence that the three type structures under consideration are highly canonical mathematical objects.

[1]  Guy McCusker Games and Full Abstraction for FPC , 2000, Inf. Comput..

[2]  A. Heyting Constructivity in mathematics : proceedings of the colloquium held at Amsterdam, 1957 , 1959 .

[3]  Jaap van Oosten The modified realizability topos , 1997 .

[4]  Dag Normann,et al.  Comparing hierarchies of total functionals , 2005, Log. Methods Comput. Sci..

[5]  Eugenio Moggi,et al.  Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[6]  G. Plotkin Set-theoretical and Other Elementary Models of the -calculus Part 1: a Set-theoretical Deenition of Applica- Tion 1 Introduction , 2007 .

[7]  A. Troelstra Models and computability , 1973 .

[8]  Samson Abramsky,et al.  A fully abstract game semantics for general references , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[9]  J. Hyland The Effective Topos , 1982 .

[10]  James Laird A Categorical Semantics of Higher Order Store , 2002, CTCS.

[11]  Nicholas Wolverson,et al.  Game semantics for an object-oriented language , 2009 .

[12]  Helmut SchwichtenbergMathematisches,et al.  Density and Choice for Total Continuous Functionals* 1. Information Systems , 1996 .

[13]  Pierre-Louis Curien On the Symmetry of Sequentiality , 1993, MFPS.

[14]  Dana,et al.  JSL volume 88 issue 4 Cover and Front matter , 1983, The Journal of Symbolic Logic.

[15]  Lars Birkedal,et al.  Local Realizability Toposes and a Modal Logic for Computability , 2002, Math. Struct. Comput. Sci..

[16]  R. Platek Foundations of recursion theory , 1966 .

[17]  Thomas Streicher,et al.  Impredicativity entails untypedness , 2002, Mathematical Structures in Computer Science.

[18]  S. Abramsky Game Semantics , 1999 .

[19]  John Longley Matching typed and untyped realizability , 2000, Electron. Notes Theor. Comput. Sci..

[20]  Dag Normann Computability over The Partial Continuous Functionals , 2000, J. Symb. Log..

[21]  Radha Jagadeesan,et al.  Games and Full Completeness for Multiplicative Linear Logic , 1994, J. Symb. Log..

[22]  Ludomir Newelski,et al.  Logic Colloquium 2005 (Lecture Notes in Logic) , 2007 .

[23]  Ulrich Berger,et al.  Computability and totality in domains , 2002, Mathematical Structures in Computer Science.

[24]  Antonio Bucciarelli,et al.  Sequentiality and strong stability , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[25]  Gérard Berry,et al.  Stable Models of Typed lambda-Calculi , 1978, ICALP.

[26]  Y. Moschovakis Review: G. Kriesel, D. Lacombe, J. Shoenfield, Effective Operations and Partial Recursive Functionals; G. Kreisel, D. Lacombe, J. R. Shoenfield, Partial Recursive Functionals and Effective Operations , 1966 .

[27]  Yu. L. Ershov,et al.  Hereditarily effective operations , 1976 .

[28]  Robert I. Soare,et al.  The History and Concept of Computability , 1999, Handbook of Computability Theory.

[29]  John Longley Eriskay : a programming language based on game semantics , 2008 .

[30]  Furio Honsell,et al.  Pre-logical Relations , 1999, CSL.

[31]  Roberto M. Amadio,et al.  Domains and lambda-calculi , 1998, Cambridge tracts in theoretical computer science.

[32]  Marc Bezem Isomorphisms Between HEO and HROE, ECF and ICFE , 1985, J. Symb. Log..

[33]  Jan A. Bergstra The continuous functionals and 2E , 1978 .

[34]  Andrej Bauer,et al.  Comparing Functional Paradigms for Exact Real-Number Computation , 2002, ICALP.

[35]  Ulrich Berger,et al.  Total Sets and Objects in Domain Theory , 1993, Ann. Pure Appl. Log..

[36]  J. Lawson,et al.  Comparing Cartesian closed categories of (core) compactly generated spaces , 2004 .

[37]  John Longley,et al.  Universal Types and What They are Good For , 2003 .

[38]  Andrej Bauer,et al.  A Relationship between Equilogical Spaces and Type Two Effectivity , 2001, MFPS.

[39]  J. V. Oosten,et al.  A combinatory algebra for sequential functionals of finite type , 1997 .

[40]  John Longley,et al.  Notions of computability at higher types II , 2001 .

[41]  Gordon Plotkin,et al.  Logical Full Abstraction and PCF , 2000 .

[42]  Pierre-Louis Curien,et al.  A Semantic Characterization of Full Abstraction for Typed Lambda Calculi , 1984, FOCS.

[43]  Andrej Bauer,et al.  The realizability approach to computable analysis and topology , 2000 .

[44]  Martín Hötzel Escardó,et al.  Infinite sets that admit fast exhaustive search , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[45]  Matthias Felleisen,et al.  Observable sequentiality and full abstraction , 1992, POPL '92.

[46]  Gordon D. Plotkin,et al.  Set-Theoretical and Other Elementary Models of the lambda-Calculus , 1993, Theor. Comput. Sci..

[47]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[48]  Robin Milner,et al.  Fully Abstract Models of Typed lambda-Calculi , 1977, Theor. Comput. Sci..

[49]  P. Daniel Hestand,et al.  Mathematical theory of domains , 2002, SIGA.

[50]  J. Hyland,et al.  Filter spaces and continuous functionals , 1979 .

[51]  John Longley The sequentially realizable functionals , 2002, Ann. Pure Appl. Log..

[52]  Yu. M. Gorchakov Theorems of the Prüfer-Kulikov Type , 1974 .

[53]  Russell Harmer,et al.  Categorical Combinatorics for Innocent Strategies , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[54]  Samson Abramsky,et al.  Call-by-Value Games , 1997, CSL.

[55]  Viggo Stoltenberg-Hansen,et al.  Mathematical theory of domains , 1994, Cambridge tracts in theoretical computer science.

[56]  Pierre-Louis Curien,et al.  Sequential Algorithms on Concrete Data Structures , 1982, Theor. Comput. Sci..

[57]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[58]  Dag Normann,et al.  The Continuous Functionals , 1999, Handbook of Computability Theory.

[59]  John R. Longley,et al.  Realizability toposes and language semantics , 1995 .

[60]  Dag Normann,et al.  Hyperfinite type structures , 1999, Journal of Symbolic Logic.

[61]  S. Kleene,et al.  The Foundations of Intuitionistic Mathematics , 1965, The Mathematical Gazette.

[62]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[63]  David B. MacQueen,et al.  The Definition of Standard ML (Revised) , 1997 .

[64]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[65]  Errett Bishop Review: Stephen Cole Kleene and Richard Eugene Vesley, The foundations of intuitionistic mathematics , 1965 .

[66]  Andrew M. Pitts,et al.  Semantics and Logics of Computation: List of Contributors , 1997 .

[67]  Piergiorgio Odifreddi Kreiseliana: About and Around Georg Kreisel , 1996 .

[68]  John Longley,et al.  On the Ubiquity of Certain Total Type Structures: (Extended Abstract) , 2004, Workshop on Domains.

[69]  James Laird Locally Boolean domains , 2005, Theor. Comput. Sci..

[70]  Yu. L. Ershov Computable functionals of finite types , 1972 .

[71]  Dana S. Scott,et al.  A Type-Theoretical Alternative to ISWIM, CUCH, OWHY , 1993, Theor. Comput. Sci..

[72]  Yu. L. Ershov Everywhere-defined continuous functionals , 1972 .

[73]  D. Normann The countable functionals , 1980 .

[74]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[75]  G. Plotkin Tω as a Universal Domain , 1978 .

[76]  A. Nerode,et al.  Review: S. C. Kleene, Recursive Functionals and Quantifiers of Finite Types I , 1962 .

[77]  Gordon D. Plotkin,et al.  Full abstraction, totality and PCF , 1999, Mathematical Structures in Computer Science.

[78]  Kenneth W. Regan,et al.  Computability , 2022, Algorithms and Theory of Computation Handbook.

[79]  R. Gandy,et al.  Computable and recursively countable functions of higher type , 1977 .

[80]  Paul-André Melliès Comparing hierarchies of types in models of linear logic , 2004, Inf. Comput..

[81]  Martin Hyland Semantics and Logics of Computation: Game Semantics , 1997 .

[82]  S. C. Kleene,et al.  The Foundations of Intuitionistic Mathematics. , 1967 .

[83]  Tosiyuki Tugué,et al.  A Note on Continuous Functionals , 1969 .

[84]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[85]  S. C. Kleene,et al.  Recursive functionals and quantifiers of finite types. II , 1959 .

[86]  D. Normann Recursion on the countable functionals , 1980 .

[87]  M. Beeson Foundations of Constructive Mathematics , 1985 .

[88]  Dag Normann The continuous functionals; computations, recursions and degrees , 1981 .

[89]  Ionel Bucur,et al.  Toposes, Algebraic Geometry and Logic , 1972 .

[90]  Yu. L. Ershov,et al.  Maximal and everywhere-defined functionals , 1974 .

[91]  Edward R. Griffor Handbook of Computability Theory , 1999, Handbook of Computability Theory.