RF and noise model of gate-all-around MOSFETs

Silicon-on-insulator (SOI) devices are excellent candidates to become an alternative to conventional bulk CMOS. The most promising SOI devices for the nanoscale range are based on multiple gate structures such as surrounding gate (SGT) or gate-all-around (GAA). These devices could be used for high-frequency application due to a significant increase in the transition frequency fit for these devices. We present a new analytical model for cylindrical undoped (lightly doped) GAA or SGT MOSFETs for dc, RF and noise analyses. The model is based on a surface potential formulation for charge control and a drift-diffusion transport model. Short-channel effects, velocity saturation effects and quantum effects have been incorporated in the model. The dc model has been extended to ac and noise using the active transmission line method. Using this model, GAA RF and noise performances are studied.

[1]  J. Barker,et al.  On the physics and modeling of small semiconductor devices—I , 1980 .

[2]  M. Omar,et al.  Drift and diffusion of charge carriers in silicon and their empirical relation to the electric field , 1987 .

[3]  C. Hu,et al.  Hole injection SiO/sub 2/ breakdown model for very low voltage lifetime extrapolation , 1994 .

[4]  Jean-Pierre Colinge,et al.  Multiple-gate SOI MOSFETs , 2004 .

[5]  M.J. Deen,et al.  High-Frequency Noise of Modern MOSFETs: Compact Modeling and Measurement Issues , 2006, IEEE Transactions on Electron Devices.

[6]  A. Cappy,et al.  Noise modeling and measurement techniques (HEMTs) , 1988 .

[7]  Y. Chen,et al.  A Comparative Study of Double-Gate and Surrounding-Gate MOSFETs in Strong Inversion and Accumulation Using an Analytical Model , 2001 .

[8]  J. P. Nougier,et al.  Differential relaxation times and diffusivities of hot carriers in isotropic semiconductors , 1977 .

[9]  A.S. Roy,et al.  Noise modeling methodologies in the presence of mobility degradation and their equivalence , 2006, IEEE Transactions on Electron Devices.

[10]  M. J. Deen,et al.  Channel noise modeling of deep submicron MOSFETs , 2002 .

[11]  Francois Danneville,et al.  High frequency noise of SOI MOSFETs: performances and limitations (Invited Paper) , 2005, SPIE International Symposium on Fluctuations and Noise.

[12]  B.C. Paul,et al.  Modeling and optimization of fringe capacitance of nanoscale DGMOS devices , 2005, IEEE Transactions on Electron Devices.

[13]  L. Selmi,et al.  An experimental study of mobility enhancement in ultrathin SOI transistors operated in double-gate mode , 2003 .

[14]  Jean-Pierre Raskin,et al.  Noise modeling in fully depleted SOI MOSFETs , 2004 .

[15]  Antonio Lazaro,et al.  A compact quantum model of nanoscale double-gate metal-oxide-semiconductor field-effect transistor for high frequency and noise simulations , 2006 .

[16]  F. Danneville,et al.  Compact-Modeling Solutions For Nanoscale Double-Gate and Gate-All-Around MOSFETs , 2006, IEEE Transactions on Electron Devices.

[17]  N. Goldsman,et al.  Efficient and accurate use of the energy transport method in device simulation , 1988 .

[18]  G. O. Workman,et al.  A process/physics-based compact model for nonclassical CMOS device and circuit design , 2004 .

[19]  Meng-Hsueh Chiang,et al.  Speed superiority of scaled double-gate CMOS , 2002 .

[20]  B. Ryu,et al.  High performance 5nm radius Twin Silicon Nanowire MOSFET (TSNWFET) : fabrication on bulk si wafer, characteristics, and reliability , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[21]  B. Iñíguez,et al.  Continuous analytic I-V model for surrounding-gate MOSFETs , 2004, IEEE Electron Device Letters.

[22]  A. Litwin,et al.  Overlooked interfacial silicide-polysilicon gate resistance in MOS transistors , 2001 .

[23]  A. Ziel Noise in solid state devices and circuits , 1986 .

[24]  F. Gamiz,et al.  Modeling the Centroid and the Inversion Charge in Cylindrical Surrounding Gate MOSFETs, Including Quantum Effects , 2008, IEEE Transactions on Electron Devices.

[25]  Kenji Taniguchi,et al.  Analytical device model for submicrometer MOSFET's , 1991 .

[26]  H. A. Hamid,et al.  Explicit continuous model for long-channel undoped surrounding gate MOSFETs , 2005, IEEE Transactions on Electron Devices.

[27]  D. Jimenez,et al.  Modeling of nanoscale gate-all-around MOSFETs , 2004, IEEE Electron Device Letters.

[28]  Jean-Pierre Raskin,et al.  Impact of downscaling on high-frequency noise performance of bulk and SOI MOSFETs , 2004 .

[29]  Peter M. Asbeck,et al.  A numerical Schrödinger–Poisson solver for radially symmetric nanowire core–shell structures , 2006 .

[30]  A. Gnudi,et al.  Low-Field Electron Mobility Model for Ultrathin-Body SOI and Double-Gate MOSFETs With Extremely Small Silicon Thicknesses , 2007, IEEE Transactions on Electron Devices.

[31]  Antonio Lazaro,et al.  RF and noise performance of double gate and single gate SOI , 2006 .

[32]  Yuan Taur,et al.  Analytic solutions of charge and capacitance in symmetric and asymmetric double-gate MOSFETs , 2001 .

[33]  Keunwoo Kim,et al.  Double-gate CMOS: symmetrical- versus asymmetrical-gate devices , 2001 .

[34]  Junji Koga,et al.  Experimental study on carrier transport mechanisms in double- and single-gate ultrathin-body MOSFETs - Coulomb scattering, volume inversion, and /spl delta/T/sub SOI/-induced scattering , 2003, IEEE International Electron Devices Meeting 2003.

[35]  Krishna C. Saraswat,et al.  Optimization of extrinsic source/drain resistance in ultrathin body double-gate FETs , 2003 .

[36]  Denis Flandre,et al.  FinFET analogue characterization from DC to 110 GHz , 2005 .

[37]  Kwangseok Han,et al.  Analytical drain thermal noise current model valid for deep submicron MOSFETs , 2004 .

[38]  C.C. Enz,et al.  Compact modeling of thermal noise in the MOS transistor , 2005, IEEE Transactions on Electron Devices.

[39]  Chris Hutchens,et al.  High-frequency FinFET model , 2005 .

[40]  G. Pei,et al.  A physical compact model of DG MOSFET for mixed-signal circuit applications- part I: model description , 2003 .