Some Observations on Comparing Zagreb Indices

Let G be a simple graph possessing n vertices and m edges. Let di be the degree of the i-th vertex of G, i =1 ,...,n . The first Zagreb index M1 is the sum of d 2 i over all vertices of G . The second Zagreb index M2 is the sum di dj over pairs of adjacent vertices of G . In this paper we search for graph for which M1/n = M2/m , and show how numerous such graphs can be constructed. In addition, we find examples of graphs for which M1/n > M2/m , which are counterexamples for the earlier conjectured inequality M1/n ≤ M2/m .

[1]  Dame Gruev A Proof of an Inequality Related to Variable Zagreb Indices for Simple Connected Graphs , 2011 .

[2]  Roberto Todeschini,et al.  Molecular descriptors for chemoinformatics , 2009 .

[3]  Vesna Andova,et al.  Variable Zagreb Indices and Karamata's Inequality , 2011 .

[4]  Sang-Gu Lee,et al.  Comparing Zagreb indices for connected graphs , 2010, Discret. Appl. Math..

[5]  Pierre Hansen,et al.  Comparing Zagreb Indices of Cyclic Graphs , 2009 .

[6]  Shouliu Wei,et al.  Comparing the Zagreb indices for connected bicyclic graphs , 2009 .

[7]  I. Gutman,et al.  Graph theory and molecular orbitals. XII. Acyclic polyenes , 1975 .

[8]  B. Horoldagva,et al.  On Comparing Zagreb Indices of Graphs , 2012 .

[9]  A. Balaban,et al.  Topological Indices for Structure-Activity Correlations , 1983, Steric Effects in Drug Design.

[10]  Ante Graovac,et al.  Comparing Zagreb M1 and M2 indices for acyclic molecules , 2007 .

[11]  Pierre Hansen,et al.  Comparing the Zagreb Indices , 2006 .

[12]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[13]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[14]  Ante Graovac,et al.  Comparing variable Zagreb M1 and M2 indices for acyclic molecules , 2008 .

[15]  Ante Graovac,et al.  On Vertex–Degree–Based Molecular Structure Descriptors , 2011 .

[16]  M. Randic Characterization of molecular branching , 1975 .

[17]  Bolian Liu,et al.  A Survey on Comparing Zagreb Indices , 2011 .

[19]  Marcin Pilipczuk,et al.  On the Zagreb index inequality of graphs with prescribed vertex degrees , 2011, Discret. Appl. Math..

[20]  Riste Škrekovski,et al.  Graph Classes (Dis)satisfying the Zagreb Indices Inequality , 2011 .

[21]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[22]  N. Trinajstic,et al.  The Zagreb Indices 30 Years After , 2003 .

[23]  G. Fath-Tabar Old and New Zagreb Indices of Graphs , 2011 .

[24]  Ting Chen,et al.  Comparing the Zagreb indices for graphs with small difference between the maximum and minimum degrees , 2009, Discret. Appl. Math..

[27]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .