Venus flytrap carnivorous lifestyle builds on herbivore defense strategies

Although the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death–related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition.

[1]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[2]  R. Hedrich,et al.  Electrical Wiring and Long-Distance Plant Communication. , 2016, Trends in plant science.

[3]  R. Hedrich,et al.  Venus Flytrap HKT1-Type Channel Provides for Prey Sodium Uptake into Carnivorous Plant Without Conflicting with Electrical Excitability , 2016, Molecular plant.

[4]  Sergey Shabala,et al.  The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake , 2016, Current Biology.

[5]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2016, Nucleic Acids Res..

[6]  J. Fuchs,et al.  Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. , 2015, The Plant journal : for cell and molecular biology.

[7]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[8]  U. Scholz,et al.  Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species , 2015, Front. Microbiol..

[9]  K. Al-Rasheid,et al.  Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps , 2015, Proceedings of the National Academy of Sciences.

[10]  L. Herrera-Estrella,et al.  High Gene Family Turnover Rates and Gene Space Adaptation in the Compact Genome of the Carnivorous Plant Utricularia gibba. , 2015, Molecular biology and evolution.

[11]  T. Glenn,et al.  Resolving phylogenetic relationships of the recently radiated carnivorous plant genus Sarracenia using target enrichment. , 2015, Molecular phylogenetics and evolution.

[12]  A. Mithöfer,et al.  Nepenthesin Protease Activity Indicates Digestive Fluid Dynamics in Carnivorous Nepenthes Plants , 2015, PloS one.

[13]  James D. Stone,et al.  The transcriptome of Utricularia vulgaris, a rootless plant with minimalist genome, reveals extreme alternative splicing and only moderate sequence similarity with Utricularia gibba , 2015, BMC Plant Biology.

[14]  C. Raynaud,et al.  To die or not to die? Lessons from lesion mimic mutants , 2015, Front. Plant Sci..

[15]  María Martín,et al.  UniProt: A hub for protein information , 2015 .

[16]  Tristan Mary-Huard,et al.  GEM2Net: from gene expression modeling to -omics networks, a new CATdb module to investigate Arabidopsis thaliana genes involved in stress response , 2014, Nucleic Acids Res..

[17]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[18]  L. Herrera-Estrella,et al.  Genome-Wide Analysis of Adaptive Molecular Evolution in the Carnivorous Plant Utricularia gibba , 2014, Genome biology and evolution.

[19]  T. Michael,et al.  Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. , 2014, Annals of botany.

[20]  Ondřej Novák,et al.  Abundance of Cysteine Endopeptidase Dionain in Digestive Fluid of Venus Flytrap (Dionaea muscipula Ellis) Is Regulated by Different Stimuli from Prey through Jasmonates , 2014, PloS one.

[21]  F. Pazos,et al.  Rational design of a ligand-based antagonist of jasmonate perception. , 2014, Nature chemical biology.

[22]  G. Howe,et al.  Jasmonate-Triggered Plant Immunity , 2014, Journal of Chemical Ecology.

[23]  Shuifang Zhu,et al.  Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads , 2014, BMC Bioinformatics.

[24]  Brett Williams,et al.  When supply does not meet demand-ER stress and plant programmed cell death , 2014, Front. Plant Sci..

[25]  M. Brosché,et al.  Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling , 2014, BMC Plant Biology.

[26]  S. Kelly,et al.  Deep Evolutionary Comparison of Gene Expression Identifies Parallel Recruitment of Trans-Factors in Two Independent Origins of C4 Photosynthesis , 2014, PLoS genetics.

[27]  Mark Stitt,et al.  Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. , 2014, Plant, cell & environment.

[28]  K. Al-Rasheid,et al.  Mechano-stimulation triggers turgor changes associated with trap closure in the Darwin plant Dionaea muscipula. , 2014, Molecular plant.

[29]  B. Demmig‐Adams,et al.  Associations between the acclimation of phloem-cell wall ingrowths in minor veins and maximal photosynthesis rate , 2014, Front. Plant Sci..

[30]  J. Enghild,et al.  Secreted major Venus flytrap chitinase enables digestion of Arthropod prey. , 2014, Biochimica et biophysica acta.

[31]  R. Hedrich,et al.  The Venus flytrap attracts insects by the release of volatile organic compounds , 2014, Journal of experimental botany.

[32]  R. Hedrich,et al.  Strategy of nitrogen acquisition and utilization by carnivorous Dionaea muscipula , 2014, Oecologia.

[33]  K. Al-Rasheid,et al.  The Dionaea muscipula Ammonium Channel DmAMT1 Provides NH4 + Uptake Associated with Venus Flytrap’s Prey Digestion , 2013, Current Biology.

[34]  C. Brownlee Carnivorous Plants: Trapping, Digesting and Absorbing All in One , 2013, Current Biology.

[35]  M. Matsui,et al.  Identification and characterization of transcription factors regulating Arabidopsis HAK5. , 2013, Plant & cell physiology.

[36]  E. Farmer,et al.  GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling , 2013, Nature.

[37]  T. Renner,et al.  Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales. , 2013, Current opinion in plant biology.

[38]  E. Nabieva,et al.  The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non-coding sequences , 2013, BMC Genomics.

[39]  A. Volkov,et al.  Electrotonic and action potentials in the Venus flytrap. , 2013, Journal of plant physiology.

[40]  C. Wasternack,et al.  Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. , 2013, Annals of botany.

[41]  M. Reichelt,et al.  Jasmonates trigger prey-induced formation of ‘outer stomach’ in carnivorous sundew plants , 2013, Proceedings of the Royal Society B: Biological Sciences.

[42]  Sergio Alan Cervantes-Pérez,et al.  Architecture and evolution of a minute plant genome , 2013, Nature.

[43]  S. Howell Endoplasmic reticulum stress responses in plants. , 2013, Annual review of plant biology.

[44]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[45]  W. Schulze,et al.  Proteomics wants cRacker: automated standardized data analysis of LC-MS derived proteomic data. , 2012, Journal of proteome research.

[46]  J. Schultz,et al.  The Protein Composition of the Digestive Fluid from the Venus Flytrap Sheds Light on Prey Digestion Mechanisms* , 2012, Molecular & Cellular Proteomics.

[47]  I. Lichtscheidl,et al.  Endocytotic uptake of nutrients in carnivorous plants. , 2012, The Plant journal : for cell and molecular biology.

[48]  W. Boland,et al.  Plant defense against herbivores: chemical aspects. , 2012, Annual review of plant biology.

[49]  X. Deng,et al.  Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade , 2012, Proceedings of the National Academy of Sciences.

[50]  I. Graham,et al.  Oxylipin Signaling: A Distinct Role for the Jasmonic Acid Precursor cis-(+)-12-Oxo-Phytodienoic Acid (cis-OPDA) , 2012, Front. Plant Sci..

[51]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools , 2011, Nucleic Acids Res..

[52]  M. Parniske,et al.  Receptor kinase signaling pathways in plant-microbe interactions. , 2012, Annual review of phytopathology.

[53]  M. Stolarz,et al.  Quite a few reasons for calling carnivores 'the most wonderful plants in the world'. , 2012, Annals of botany.

[54]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[55]  S. Schuster,et al.  Integrative analysis of environmental sequences using MEGAN4. , 2011, Genome research.

[56]  Rainer Hedrich,et al.  A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap , 2011, Proceedings of the National Academy of Sciences.

[57]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[58]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[59]  L. Herrera-Estrella,et al.  Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia), a carnivorous plant with a minimal genome , 2011, BMC Plant Biology.

[60]  U. Flügge,et al.  The role of transporters in supplying energy to plant plastids. , 2011, Journal of experimental botany.

[61]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[62]  S. Howell,et al.  Endoplasmic Reticulum Protein Quality Control and Its Relationship to Environmental Stress Responses in Plants , 2010, Plant Cell.

[63]  J. Rizo,et al.  Jasmonate perception by inositol phosphate-potentiated COI1-JAZ co-receptor , 2010, Nature.

[64]  Dorothea Emig,et al.  Partitioning biological data with transitivity clustering , 2010, Nature Methods.

[65]  Yibo Wu,et al.  GOSemSim: an R package for measuring semantic similarity among GO terms and gene products , 2010, Bioinform..

[66]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[67]  C. Kost,et al.  The Role of Jasmonates in Floral Nectar Secretion , 2010, PloS one.

[68]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[69]  Audrey Kauffmann,et al.  Bioinformatics Applications Note Arrayqualitymetrics—a Bioconductor Package for Quality Assessment of Microarray Data , 2022 .

[70]  A. Ellison,et al.  Energetics and the evolution of carnivorous plants--Darwin's 'most wonderful plants in the world'. , 2009, Journal of experimental botany.

[71]  Peter J. Woolf,et al.  GAGE: generally applicable gene set enrichment for pathway analysis , 2009, BMC Bioinformatics.

[72]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[73]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[74]  L. Adamec Mineral nutrition of carnivorous plants: A review , 1997, The Botanical Review.

[75]  Y. Narusaka,et al.  CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis , 2007, Proceedings of the National Academy of Sciences.

[76]  T. Fujiwara,et al.  An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil , 2007, Proceedings of the National Academy of Sciences.

[77]  J. Micol,et al.  The JAZ family of repressors is the missing link in jasmonate signalling , 2007, Nature.

[78]  B. Demmig‐Adams,et al.  Role of light and jasmonic acid signaling in regulating foliar phloem cell wall ingrowth development. , 2007, The New phytologist.

[79]  G. Bringmann,et al.  Molecular phylogeny and character evolution of carnivorous plant families in Caryophyllales--revisited. , 2006, Plant biology.

[80]  W. Kim,et al.  Mitochondria-Associated Hexokinases Play a Role in the Control of Programmed Cell Death in Nicotiana benthamiana[W] , 2006, The Plant Cell Online.

[81]  Torulf Mollestad,et al.  Additional Gene Ontology structure for improved biological reasoning , 2006, Bioinform..

[82]  Kazuo Shinozaki,et al.  Loss of NECROTIC SPOTTED LESIONS 1 associates with cell death and defense responses in Arabidopsis thaliana , 2006, Plant Molecular Biology.

[83]  Thomas Lengauer,et al.  Improved scoring of functional groups from gene expression data by decorrelating GO graph structure , 2006, Bioinform..

[84]  R. Liechti,et al.  Arabidopsis Jasmonate Signaling Pathway , 2006, Science's STKE.

[85]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[86]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[87]  Rolf Apweiler,et al.  InterProScan: protein domains identifier , 2005, Nucleic Acids Res..

[88]  L. Mahadevan,et al.  How the Venus flytrap snaps , 2005, Nature.

[89]  P. A. Rea,et al.  The cuticle ofDionaea muscipula ellis (Venus's Flytrap) in relation to stimulation, secretion and absorption , 1983, Protoplasma.

[90]  R. Mittler,et al.  Reactive oxygen gene network of plants. , 2004, Trends in plant science.

[91]  M. J. Harrison,et al.  Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. , 2004, The Plant journal : for cell and molecular biology.

[92]  A. Krogh,et al.  A combined transmembrane topology and signal peptide prediction method. , 2004, Journal of molecular biology.

[93]  R. Durbin,et al.  GeneWise and Genomewise. , 2004, Genome research.

[94]  S. Rhee,et al.  MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. , 2004, The Plant journal : for cell and molecular biology.

[95]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[96]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[97]  K. Wurdack,et al.  Molecular evidence for the common origin of snap-traps among carnivorous plants. , 2002, American journal of botany.

[98]  Rolf Apweiler,et al.  Evaluation of methods for the prediction of membrane spanning regions , 2001, Bioinform..

[99]  M. Chase,et al.  Carnivorous plants: phylogeny and structural evolution. , 1992, Science.

[100]  R. J. Robins,et al.  The Carnivorous Plants , 1989 .

[101]  Thomas J. Givnish,et al.  Carnivory in the Bromeliad Brocchinia reducta, with a Cost/Benefit Model for the General Restriction of Carnivorous Plants to Sunny, Moist, Nutrient-Poor Habitats , 1984, The American Naturalist.

[102]  P. A. Rea,et al.  SECRETION AND REDISTRIBUTION OF CHLORIDE IN THE DIGESTIVE GLANDS OF DIONAEAMUSCIPULA ELLIS (VENUS'S FLYTRAP) UPON SECRETION STIMULATION , 1983 .

[103]  B. Juniper,et al.  THE SECRETORY CYCLE OF DIONAEA MUSCIPULA ELLIS. V. THE ABSORPTION OF NUTRIENTS , 1980 .

[104]  B. Juniper,et al.  THE SECRETORY CYCLE OF DIONAEA MUSCIPULA ELLIS , 1980 .

[105]  A. Spurr A low-viscosity epoxy resin embedding medium for electron microscopy. , 1969, Journal of ultrastructure research.

[106]  F. Lloyd The Carnivorous Plants , 1945 .

[107]  FRANCISCO GINEZ,et al.  Carnivorous Plants , 1877, Nature.

[108]  L. Tait Insectivorous Plants , 1875, Nature.

[109]  J. Burdon-Sanderson I. Note on the electrical phenomena which accompany irritation of the leaf of Dionæa muscipula , 1873, Proceedings of the Royal Society of London.