Numerical methods for plasma physics in collisional regimes
暂无分享,去创建一个
G. Dimarco | L. Pareschi | G. Dimarco | Q. Li | Q. Li | L. Pareschi | B. Yan | B. Yan | Qin Li | Bokai Yan
[1] Giacomo Dimarco,et al. Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations , 2012, SIAM J. Numer. Anal..
[2] C. Villani. Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .
[3] S. Rjasanow,et al. Difference scheme for the Boltzmann equation based on the Fast Fourier Transform , 1997 .
[4] C. Capjack,et al. Collisional particle simulation of ion acoustic instability , 2006, Journal of Plasma Physics.
[5] Pierre Degond,et al. An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory , 1994 .
[6] Giacomo Dimarco,et al. Numerical methods for kinetic equations* , 2014, Acta Numerica.
[7] José A. Carrillo,et al. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system , 2011 .
[8] Ghanshyam,et al. Self-focusing and filamentation of laser beams in collisional plasmas with finite thermal conduction , 1993, Journal of Plasma Physics.
[9] William M. MacDonald,et al. Fokker-Planck Equation for an Inverse-Square Force , 1957 .
[10] Lorenzo Pareschi,et al. Fast algorithms for computing the Boltzmann collision operator , 2006, Math. Comput..
[11] E. Hairer,et al. Structure-Preserving Algorithms for Ordinary Differential Equations , 2006 .
[12] Denis Serre,et al. Handbook of mathematical fluid dynamics , 2002 .
[13] Pierre Degond,et al. Fast Algorithms for Numerical, Conservative, and Entropy Approximations of the Fokker-Planck-Landau Equation , 1997 .
[14] Lorenzo Pareschi,et al. Fast methods for the Boltzmann collision integral , 2004 .
[15] Giuseppe Toscani,et al. Méthode spectrale rapide pour l'équation de Fokker–Planck–Landau , 2000 .
[16] Irene M. Gamba,et al. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states , 2009, J. Comput. Phys..
[17] Giacomo Dimarco,et al. Exponential Runge-Kutta Methods for Stiff Kinetic Equations , 2010, SIAM J. Numer. Anal..
[18] C. Loan,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .
[19] L. Pareschi,et al. High order asymptotic-preserving schemes for the Boltzmann equation , 2012, 1201.6479.
[20] P. J. Morrison,et al. A discontinuous Galerkin method for the Vlasov-Poisson system , 2010, J. Comput. Phys..
[21] Qin Li,et al. Asymptotic-Preserving Exponential Methods for the Quantum Boltzmann Equation with High-Order Accuracy , 2013, J. Sci. Comput..
[22] Lorenzo Pareschi,et al. A Fourier spectral method for homogeneous boltzmann equations , 1996 .
[23] Stéphane Cordier,et al. Conservative and Entropy Decaying Numerical Scheme for the Isotropic Fokker-Planck-Landau Equation , 1998 .
[24] Jay P. Boris,et al. Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .
[25] G. Knorr,et al. The integration of the vlasov equation in configuration space , 1976 .
[26] Qin Li,et al. Exponential Runge-Kutta for the inhomogeneous Boltzmann equations with high order of accuracy , 2014, J. Comput. Phys..
[27] Lorenzo Pareschi,et al. Solving the Boltzmann Equation in N log2N , 2006, SIAM J. Sci. Comput..
[28] Shi Jin,et al. Author's Personal Copy a Class of Asymptotic-preserving Schemes for the Fokker–planck–landau Equation , 2011 .
[29] R. Illner,et al. The mathematical theory of dilute gases , 1994 .
[30] Xu Yang,et al. Exponential Runge-Kutta Methods for the Multispecies Boltzmann Equation , 2014 .
[31] P. Bertrand,et al. Conservative numerical schemes for the Vlasov equation , 2001 .
[32] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[33] Stéphane Cordier,et al. Numerical Analysis of Conservative and Entropy Schemes for the Fokker--Planck--Landau Equation , 1999 .
[34] N. Crouseilles,et al. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles , 2012 .
[35] Giacomo Dimarco,et al. Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas , 2010, 1010.0108.
[36] Shi Jin. Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .
[37] Lorenzo Pareschi,et al. On steady-state preserving spectral methods for homogeneous Boltzmann equations , 2014 .
[38] Giovanni Russo,et al. Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation , 1997 .
[39] S. Rjasanow,et al. Fast deterministic method of solving the Boltzmann equation for hard spheres , 1999 .
[40] Bruce I. Cohen,et al. Particle simulation of Coulomb collisions: Comparing the methods of Takizuka & Abe and Nanbu , 2008, J. Comput. Phys..
[41] Steven J. Ruuth,et al. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .
[42] E. Sonnendrücker,et al. The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .
[43] Petr Hellinger,et al. A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma , 2007, J. Comput. Phys..
[44] C. Cercignani. The Boltzmann equation and its applications , 1988 .
[45] P. Degond. Asymptotic-Preserving Schemes for Fluid Models of Plasmas , 2011, 1104.1869.
[46] Yingda Cheng,et al. Positivity-preserving discontinuous Galerkin schemes for linear Vlasov-Boltzmann transport equations , 2012, Math. Comput..
[47] Laurent Desvillettes,et al. On asymptotics of the Boltzmann equation when the collisions become grazing , 1992 .
[48] Irene M. Gamba,et al. A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit , 2013, J. Comput. Phys..
[49] Wei Guo,et al. Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation , 2013, J. Comput. Phys..
[50] Chi-Wang Shu,et al. Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov-Poisson system , 2011, J. Comput. Phys..
[51] Lorenzo Pareschi,et al. Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.
[52] Lorenzo Pareschi,et al. A Numerical Method for the Accurate Solution of the Fokker–Planck–Landau Equation in the Nonhomogeneous Case , 2002 .
[53] F. Nier,et al. Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .
[54] Boun Oumar Dia,et al. Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées , 1996 .
[55] Shi Jin. ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .
[56] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[57] Shi Jin,et al. A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..
[58] Francis Filbet,et al. Analysis of spectral methods for the homogeneous Boltzmann equation , 2008, 0811.2849.
[59] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[60] José A. Carrillo,et al. Nonoscillatory Interpolation Methods Applied to Vlasov-Based Models , 2007, SIAM J. Sci. Comput..
[61] Lorenzo Pareschi,et al. An introduction to Monte Carlo method for the Boltzmann equation , 2001 .
[62] Radjesvarane Alexandre,et al. On the Landau approximation in plasma physics , 2004 .
[63] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[64] Pierre Degond,et al. THE FOKKER-PLANCK ASYMPTOTICS OF THE BOLTZMANN COLLISION OPERATOR IN THE COULOMB CASE , 1992 .
[65] Guillaume Latu,et al. Comparison of two Eulerian solvers for the four-dimensional Vlasov equation: Part I , 2008 .
[66] F. Filbet,et al. Comparison of numerical schemes for Fokker-Planck-Landau equation , 2001 .
[67] George V. Khazanov,et al. The Spectral Collocation Method for the Kinetic Equation with the Nonlinear Two-Dimensional Coulomb Collisional Operator , 2000 .
[68] Mohammed Lemou,et al. Multipole expansions for the Fokker-Planck-Landau operator , 1998 .
[69] G. Barkema,et al. An introduction to Monte Carlo methods , 2014, 1404.0209.
[70] Giacomo Dimarco,et al. A Hybrid Method for Accelerated Simulation of Coulomb Collisions in a Plasma , 2007, Multiscale Model. Simul..
[71] Nanbu,et al. Theory of collision algorithms for gases and plasmas based on the boltzmann equation and the landau-fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[72] Lorenzo Pareschi,et al. Efficient Asymptotic Preserving Deterministic methods for the Boltzmann Equation , 2011 .
[73] Eric Sonnendrücker,et al. Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..
[74] Lorenzo Pareschi,et al. Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit , 2010, Numerische Mathematik.