Numerical methods for plasma physics in collisional regimes

We consider the development of accurate and efficient numerical methods for the solution of the Vlasov–Landau equation describing a collisional plasma. The methods combine a Lagrangian approach for the Vlasov solver with a fast spectral method for the solution of the Landau operator. To this goal, new modified spectral methods for the Landau integral which are capable to capture correctly the Maxwellian steady state are introduced. A particular care is devoted to the construction of Implicit–Explicit and Exponential Runge–Kutta methods that permit to achieve high-order and efficient time integration of the collisional step. Several numerical tests are reported which show the high accuracy of the numerical schemes here presented.

[1]  Giacomo Dimarco,et al.  Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations , 2012, SIAM J. Numer. Anal..

[2]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[3]  S. Rjasanow,et al.  Difference scheme for the Boltzmann equation based on the Fast Fourier Transform , 1997 .

[4]  C. Capjack,et al.  Collisional particle simulation of ion acoustic instability , 2006, Journal of Plasma Physics.

[5]  Pierre Degond,et al.  An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory , 1994 .

[6]  Giacomo Dimarco,et al.  Numerical methods for kinetic equations* , 2014, Acta Numerica.

[7]  José A. Carrillo,et al.  Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system , 2011 .

[8]  Ghanshyam,et al.  Self-focusing and filamentation of laser beams in collisional plasmas with finite thermal conduction , 1993, Journal of Plasma Physics.

[9]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .

[10]  Lorenzo Pareschi,et al.  Fast algorithms for computing the Boltzmann collision operator , 2006, Math. Comput..

[11]  E. Hairer,et al.  Structure-Preserving Algorithms for Ordinary Differential Equations , 2006 .

[12]  Denis Serre,et al.  Handbook of mathematical fluid dynamics , 2002 .

[13]  Pierre Degond,et al.  Fast Algorithms for Numerical, Conservative, and Entropy Approximations of the Fokker-Planck-Landau Equation , 1997 .

[14]  Lorenzo Pareschi,et al.  Fast methods for the Boltzmann collision integral , 2004 .

[15]  Giuseppe Toscani,et al.  Méthode spectrale rapide pour l'équation de Fokker–Planck–Landau , 2000 .

[16]  Irene M. Gamba,et al.  Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states , 2009, J. Comput. Phys..

[17]  Giacomo Dimarco,et al.  Exponential Runge-Kutta Methods for Stiff Kinetic Equations , 2010, SIAM J. Numer. Anal..

[18]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[19]  L. Pareschi,et al.  High order asymptotic-preserving schemes for the Boltzmann equation , 2012, 1201.6479.

[20]  P. J. Morrison,et al.  A discontinuous Galerkin method for the Vlasov-Poisson system , 2010, J. Comput. Phys..

[21]  Qin Li,et al.  Asymptotic-Preserving Exponential Methods for the Quantum Boltzmann Equation with High-Order Accuracy , 2013, J. Sci. Comput..

[22]  Lorenzo Pareschi,et al.  A Fourier spectral method for homogeneous boltzmann equations , 1996 .

[23]  Stéphane Cordier,et al.  Conservative and Entropy Decaying Numerical Scheme for the Isotropic Fokker-Planck-Landau Equation , 1998 .

[24]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[25]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[26]  Qin Li,et al.  Exponential Runge-Kutta for the inhomogeneous Boltzmann equations with high order of accuracy , 2014, J. Comput. Phys..

[27]  Lorenzo Pareschi,et al.  Solving the Boltzmann Equation in N log2N , 2006, SIAM J. Sci. Comput..

[28]  Shi Jin,et al.  Author's Personal Copy a Class of Asymptotic-preserving Schemes for the Fokker–planck–landau Equation , 2011 .

[29]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[30]  Xu Yang,et al.  Exponential Runge-Kutta Methods for the Multispecies Boltzmann Equation , 2014 .

[31]  P. Bertrand,et al.  Conservative numerical schemes for the Vlasov equation , 2001 .

[32]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[33]  Stéphane Cordier,et al.  Numerical Analysis of Conservative and Entropy Schemes for the Fokker--Planck--Landau Equation , 1999 .

[34]  N. Crouseilles,et al.  Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles , 2012 .

[35]  Giacomo Dimarco,et al.  Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas , 2010, 1010.0108.

[36]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[37]  Lorenzo Pareschi,et al.  On steady-state preserving spectral methods for homogeneous Boltzmann equations , 2014 .

[38]  Giovanni Russo,et al.  Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation , 1997 .

[39]  S. Rjasanow,et al.  Fast deterministic method of solving the Boltzmann equation for hard spheres , 1999 .

[40]  Bruce I. Cohen,et al.  Particle simulation of Coulomb collisions: Comparing the methods of Takizuka & Abe and Nanbu , 2008, J. Comput. Phys..

[41]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[42]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[43]  Petr Hellinger,et al.  A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma , 2007, J. Comput. Phys..

[44]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[45]  P. Degond Asymptotic-Preserving Schemes for Fluid Models of Plasmas , 2011, 1104.1869.

[46]  Yingda Cheng,et al.  Positivity-preserving discontinuous Galerkin schemes for linear Vlasov-Boltzmann transport equations , 2012, Math. Comput..

[47]  Laurent Desvillettes,et al.  On asymptotics of the Boltzmann equation when the collisions become grazing , 1992 .

[48]  Irene M. Gamba,et al.  A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit , 2013, J. Comput. Phys..

[49]  Wei Guo,et al.  Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation , 2013, J. Comput. Phys..

[50]  Chi-Wang Shu,et al.  Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov-Poisson system , 2011, J. Comput. Phys..

[51]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[52]  Lorenzo Pareschi,et al.  A Numerical Method for the Accurate Solution of the Fokker–Planck–Landau Equation in the Nonhomogeneous Case , 2002 .

[53]  F. Nier,et al.  Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .

[54]  Boun Oumar Dia,et al.  Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées , 1996 .

[55]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[56]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[57]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[58]  Francis Filbet,et al.  Analysis of spectral methods for the homogeneous Boltzmann equation , 2008, 0811.2849.

[59]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[60]  José A. Carrillo,et al.  Nonoscillatory Interpolation Methods Applied to Vlasov-Based Models , 2007, SIAM J. Sci. Comput..

[61]  Lorenzo Pareschi,et al.  An introduction to Monte Carlo method for the Boltzmann equation , 2001 .

[62]  Radjesvarane Alexandre,et al.  On the Landau approximation in plasma physics , 2004 .

[63]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[64]  Pierre Degond,et al.  THE FOKKER-PLANCK ASYMPTOTICS OF THE BOLTZMANN COLLISION OPERATOR IN THE COULOMB CASE , 1992 .

[65]  Guillaume Latu,et al.  Comparison of two Eulerian solvers for the four-dimensional Vlasov equation: Part I , 2008 .

[66]  F. Filbet,et al.  Comparison of numerical schemes for Fokker-Planck-Landau equation , 2001 .

[67]  George V. Khazanov,et al.  The Spectral Collocation Method for the Kinetic Equation with the Nonlinear Two-Dimensional Coulomb Collisional Operator , 2000 .

[68]  Mohammed Lemou,et al.  Multipole expansions for the Fokker-Planck-Landau operator , 1998 .

[69]  G. Barkema,et al.  An introduction to Monte Carlo methods , 2014, 1404.0209.

[70]  Giacomo Dimarco,et al.  A Hybrid Method for Accelerated Simulation of Coulomb Collisions in a Plasma , 2007, Multiscale Model. Simul..

[71]  Nanbu,et al.  Theory of collision algorithms for gases and plasmas based on the boltzmann equation and the landau-fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[72]  Lorenzo Pareschi,et al.  Efficient Asymptotic Preserving Deterministic methods for the Boltzmann Equation , 2011 .

[73]  Eric Sonnendrücker,et al.  Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..

[74]  Lorenzo Pareschi,et al.  Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit , 2010, Numerische Mathematik.