Bayesian smoothing in the estimation of the pair potential function of Gibbs point processes
暂无分享,去创建一个
[1] C. Geyer,et al. Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .
[2] C. Geyer,et al. Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .
[3] J. Heikkinen,et al. Non‐parametric Bayesian Estimation of a Spatial Poisson Intensity , 1998 .
[4] B. Ripley. Simulating Spatial Patterns: Dependent Samples from a Multivariate Density , 1979 .
[5] J. Besag. On the Statistical Analysis of Dirty Pictures , 1986 .
[6] Y. Ogata,et al. Likelihood Analysis of Spatial Point Patterns , 1984 .
[7] A. Baddeley,et al. Area-interaction point processes , 1993 .
[8] B. Ripley. Statistical inference for spatial processes , 1990 .
[9] William H. Press,et al. Numerical Recipes in C, 2nd Edition , 1992 .
[10] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[11] Adrian F. M. Smith,et al. Automatic Bayesian curve fitting , 1998 .
[12] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[13] P. Diggle,et al. Monte Carlo Methods of Inference for Implicit Statistical Models , 1984 .
[14] Kerrie Mengersen,et al. [Bayesian Computation and Stochastic Systems]: Rejoinder , 1995 .
[15] A. F. M. Smith,et al. Automatic Bayesian curve ® tting , 1998 .
[16] David J. Gates,et al. Clustering estimates for spatial point distributions with unstable potentials , 1986 .
[18] T. Fiksel. Estimation of interaction potentials of gibbsian point processes , 1988 .
[19] A. Baddeley,et al. A non-parametric measure of spatial interaction in point patterns , 1996, Advances in Applied Probability.
[20] Jesper Møller,et al. Markov chain Monte Carlo and spatial point processes , 2019, Stochastic Geometry.
[21] C. Geyer,et al. Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .
[22] J. Heikkinen,et al. Modeling a Poisson forest in variable elevations: a nonparametric Bayesian approach. , 1999, Biometrics.
[23] Charles J. Geyer,et al. Likelihood inference for spatial point processes , 2019, Stochastic Geometry.
[24] P. Diggle,et al. On parameter estimation for pairwise interaction point processes , 1994 .
[25] P. Diggle,et al. A nonparametric estimator for pairwise-interaction point processes , 1987 .
[26] Adrian Baddeley,et al. Markov properties of cluster processes , 1996, Advances in Applied Probability.
[27] T. Mattfeldt. Stochastic Geometry and Its Applications , 1996 .
[28] C. Preston. Spatial birth and death processes , 1975, Advances in Applied Probability.
[29] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[30] P. M. Prenter,et al. Exponential spaces and counting processes , 1972 .
[31] 日野 寛三,et al. 対数正規分布(Lognormal Distribution)のあてはめについて , 1994 .
[32] A. Baddeley,et al. Nearest-Neighbour Markov Point Processes and Random Sets , 1989 .
[33] J. Heikkinen,et al. An algorithm for nonparametric Bayesian estimation of a Poisson intensity , 1996 .
[34] F. Kelly,et al. A note on Strauss's model for clustering , 1976 .
[35] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.