Bayesian smoothing in the estimation of the pair potential function of Gibbs point processes

A exible Bayesian method is suggested for the pair potential estimation with a high-dimensional parameter space. The method is based on a Bayesian smoothing technique, commonly applied in statistical image analysis. For the calculation of the posterior mode estimator a new Monte Carlo algorithm is developed. The method is illustrated through examples with both real and simulated data, and its extension into truly nonparametric pair potential estimation is discussed.

[1]  C. Geyer,et al.  Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .

[2]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[3]  J. Heikkinen,et al.  Non‐parametric Bayesian Estimation of a Spatial Poisson Intensity , 1998 .

[4]  B. Ripley Simulating Spatial Patterns: Dependent Samples from a Multivariate Density , 1979 .

[5]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[6]  Y. Ogata,et al.  Likelihood Analysis of Spatial Point Patterns , 1984 .

[7]  A. Baddeley,et al.  Area-interaction point processes , 1993 .

[8]  B. Ripley Statistical inference for spatial processes , 1990 .

[9]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[10]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[11]  Adrian F. M. Smith,et al.  Automatic Bayesian curve fitting , 1998 .

[12]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[13]  P. Diggle,et al.  Monte Carlo Methods of Inference for Implicit Statistical Models , 1984 .

[14]  Kerrie Mengersen,et al.  [Bayesian Computation and Stochastic Systems]: Rejoinder , 1995 .

[15]  A. F. M. Smith,et al.  Automatic Bayesian curve ® tting , 1998 .

[16]  David J. Gates,et al.  Clustering estimates for spatial point distributions with unstable potentials , 1986 .

[17]  李幼升,et al.  Ph , 1989 .

[18]  T. Fiksel Estimation of interaction potentials of gibbsian point processes , 1988 .

[19]  A. Baddeley,et al.  A non-parametric measure of spatial interaction in point patterns , 1996, Advances in Applied Probability.

[20]  Jesper Møller,et al.  Markov chain Monte Carlo and spatial point processes , 2019, Stochastic Geometry.

[21]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[22]  J. Heikkinen,et al.  Modeling a Poisson forest in variable elevations: a nonparametric Bayesian approach. , 1999, Biometrics.

[23]  Charles J. Geyer,et al.  Likelihood inference for spatial point processes , 2019, Stochastic Geometry.

[24]  P. Diggle,et al.  On parameter estimation for pairwise interaction point processes , 1994 .

[25]  P. Diggle,et al.  A nonparametric estimator for pairwise-interaction point processes , 1987 .

[26]  Adrian Baddeley,et al.  Markov properties of cluster processes , 1996, Advances in Applied Probability.

[27]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[28]  C. Preston Spatial birth and death processes , 1975, Advances in Applied Probability.

[29]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[30]  P. M. Prenter,et al.  Exponential spaces and counting processes , 1972 .

[31]  日野 寛三,et al.  対数正規分布(Lognormal Distribution)のあてはめについて , 1994 .

[32]  A. Baddeley,et al.  Nearest-Neighbour Markov Point Processes and Random Sets , 1989 .

[33]  J. Heikkinen,et al.  An algorithm for nonparametric Bayesian estimation of a Poisson intensity , 1996 .

[34]  F. Kelly,et al.  A note on Strauss's model for clustering , 1976 .

[35]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.