A Mach-sensitive implicit-explicit scheme adapted to compressible multi-scale flows
暂无分享,去创建一个
Jean-Marc Hérard | P. Galon | F. Daude | D. Iampietro | J. Hérard | F. Daude | P. Galon | David Iampietro
[1] Jean-Marc Hérard,et al. A hybrid scheme to compute contact discontinuities in one-dimensional Euler systems , 2002 .
[2] F. Bouchut. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .
[3] Hamed Zakerzadeh. On the mach-uniformity of the Lagrange-projection scheme , 2016 .
[4] Mathieu Girardin,et al. Asymptotic preserving and all-regime Lagrange-Projection like numerical schemes : application to two-phase flows in low mach regime , 2014 .
[5] Jean-Marc Hérard,et al. A conservative fractional step method to solve non-isentropic Euler equations , 1997 .
[6] Jian‐Guo Liu,et al. An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations , 2012 .
[7] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[8] P. Degond,et al. All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.
[9] Frédéric Coquel,et al. RELAXATION OF FLUID SYSTEMS , 2012 .
[10] Angus R. Simpson,et al. Closure of "Large Water-Hammer Pressures for Column Separation in Pipelines" , 1991 .
[11] Samuel Kokh,et al. An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes , 2016 .
[12] S. Clerc,et al. Numerical Simulation of the Homogeneous Equilibrium Model for Two-Phase Flows , 2000 .
[13] Hervé Guillard,et al. Behavior of upwind scheme in the low Mach number limit: III. Preconditioned dissipation for a five equation two phase model , 2008 .
[14] Raphaël Loubère,et al. Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit , 2017, SIAM J. Sci. Comput..
[15] E. Turkel,et al. Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .
[16] Stéphane Dellacherie,et al. Construction of modified Godunov-type schemes accurate at any Mach number for the compressible Euler system , 2016 .
[17] Samuel Kokh,et al. An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes , 2017, J. Comput. Phys..
[18] T. Hou,et al. Why nonconservative schemes converge to wrong solutions: error analysis , 1994 .
[19] P. Comte,et al. Self-Adaptive Newton-based iteration strategy for the LES of turbulent multi-scale flows , 2014 .
[20] R. Klein. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .
[21] S. Noelle,et al. A note on the stability of implicit-explicit flux-splittings for stiff systems of hyperbolic conservation laws , 2018 .
[22] G. Whitham. Linear and non linear waves , 1974 .
[23] H. Guillard,et al. On the behaviour of upwind schemes in the low Mach number limit , 1999 .
[24] G. Mcguire,et al. Explicit-implicit schemes for the numerical solution of nonlinear hyperbolic systems , 1975 .
[25] G. Mcguire,et al. A class of implicit, second-order accurate, dissipative schemes for solving systems of conservation laws , 1974 .
[26] François Bouchut,et al. Entropy satisfying flux vector splittings and kinetic BGK models , 2003, Numerische Mathematik.
[27] Graham V. Candler,et al. A parallel implicit method for the direct numerical simulation of wall-bounded compressible turbulence , 2006, J. Comput. Phys..
[28] Tsuyoshi Murata,et al. {m , 1934, ACML.
[29] Rémy Baraille,et al. Une version à pas fractionnaires du schéma de Godunov pour l'hydrodynamique , 1992 .
[30] Jochen Schütz,et al. Flux Splitting for Stiff Equations: A Notion on Stability , 2014, J. Sci. Comput..
[31] Frédéric Coquel,et al. Entropy-satisfying relaxation method with large time-steps for Euler IBVPs , 2010, Math. Comput..
[32] Mohamed Salah Ghidaoui,et al. A Review of Water Hammer Theory and Practice , 2005 .
[33] A. Lerat. Implicit methods of second-order accuracy for the Euler equations , 1983 .
[34] Claus-Dieter Munz,et al. A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics , 2014, SIAM J. Sci. Comput..
[35] Lorenzo Allievi,et al. Teoria generale del moto perturbato dell'acqua nei tubi in pressione (colpo d'ariete) memoria dell'ing. L. B. Allievi , 1903 .
[36] P. Goorjian,et al. Implicit Finite-Difference Computations of Unsteady Transonic Flows about Airfoils , 1977 .
[37] H. Guillard,et al. On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes , 2004 .
[38] Pascal Galon,et al. A Mach-Sensitive Splitting Approach for Euler-like Systems , 2018 .