Submodular Sparse Sensing for Gaussian Detection With Correlated Observations

Detection of a signal under noise is a classical signal processing problem. When monitoring spatial phenomena under a fixed budget, i.e., either physical, economical, or computational constraints, the selection of a subset of available sensors, referred to as sparse sensing, that meets both the budget and performance requirements is highly desirable. Unfortunately, the subset selection problem for detection under dependent observations is combinatorial in nature, and suboptimal subset selection algorithms must be employed. In this work, different from the widely used convex relaxation of the problem, we leverage submodularity, the diminishing returns property, to provide practical algorithms suitable for large-scale subset selection. This is achieved by means of low-complexity greedy algorithms, which incur a reduced computational complexity compared to their convex counterparts.

[1]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[2]  Prabhu Babu,et al.  Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning , 2017, IEEE Transactions on Signal Processing.

[3]  James A. Bucklew,et al.  Optimal sampling schemes for the Gaussian hypothesis testing problem , 1990, IEEE Trans. Acoust. Speech Signal Process..

[4]  Alan L. Yuille,et al.  The Concave-Convex Procedure , 2003, Neural Computation.

[5]  Qingshan Liu,et al.  Newton-Type Greedy Selection Methods for $\ell _0$ -Constrained Minimization , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  João M. F. Xavier,et al.  Sensor Selection for Event Detection in Wireless Sensor Networks , 2010, IEEE Transactions on Signal Processing.

[7]  Haris Vikalo,et al.  Greedy sensor selection: Leveraging submodularity , 2010, 49th IEEE Conference on Decision and Control (CDC).

[8]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[9]  T. Kailath The Divergence and Bhattacharyya Distance Measures in Signal Selection , 1967 .

[10]  Andreas Krause,et al.  Submodular Function Maximization , 2014, Tractability.

[11]  Stephen P. Boyd,et al.  Sensor Selection via Convex Optimization , 2009, IEEE Transactions on Signal Processing.

[12]  Robert P.W. Duin,et al.  PRTools3: A Matlab Toolbox for Pattern Recognition , 2000 .

[13]  Ali H. Sayed,et al.  Innovations Diffusion: A Spatial Sampling Scheme for Distributed Estimation and Detection , 2009, IEEE Transactions on Signal Processing.

[14]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  Erik G. Larsson,et al.  Spectrum Sensing for Cognitive Radio : State-of-the-Art and Recent Advances , 2012, IEEE Signal Processing Magazine.

[16]  Andreas Krause,et al.  Cost-effective outbreak detection in networks , 2007, KDD '07.

[17]  Hua Li,et al.  Sensor Placement by Maximal Projection on Minimum Eigenspace for Linear Inverse Problems , 2015, IEEE Transactions on Signal Processing.

[18]  Sundeep Prabhakar Chepuri,et al.  Sparse Sensing for Distributed Detection , 2016, IEEE Transactions on Signal Processing.

[19]  Sundeep Prabhakar Chepuri,et al.  Greedy sensor selection for non-linear models , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[20]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[21]  Sergios Theodoridis,et al.  Introduction to Pattern Recognition: A Matlab Approach , 2010 .

[22]  Pramod K. Varshney,et al.  Sampling design for Gaussian detection problems , 1997, IEEE Trans. Signal Process..

[23]  Alexandros G. Dimakis,et al.  Scalable Greedy Feature Selection via Weak Submodularity , 2017, AISTATS.

[24]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[25]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[26]  Sundeep Prabhakar Chepuri,et al.  Sparse Sensing for Statistical Inference , 2016, Found. Trends Signal Process..

[27]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[28]  Stamatis Cambanis,et al.  Sampling designs for the detection of signals in noise , 1983, IEEE Trans. Inf. Theory.

[29]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[30]  Jeff A. Bilmes,et al.  Submodularity beyond submodular energies: Coupling edges in graph cuts , 2011, CVPR 2011.

[31]  Sundeep Prabhakar Chepuri,et al.  Sensor Selection for Estimation with Correlated Measurement Noise , 2015, IEEE Transactions on Signal Processing.

[32]  Zhi-Quan Luo,et al.  Semidefinite Relaxation of Quadratic Optimization Problems , 2010, IEEE Signal Processing Magazine.

[33]  Xiaoli Ma,et al.  Sparsity-aware sensor selection for correlated noise , 2014, 17th International Conference on Information Fusion (FUSION).

[34]  Bruno Sinopoli,et al.  Sensor selection strategies for state estimation in energy constrained wireless sensor networks , 2011, Autom..

[35]  Jeff A. Bilmes,et al.  A Submodular-supermodular Procedure with Applications to Discriminative Structure Learning , 2005, UAI.

[36]  Issa Traore,et al.  Continuous Authentication Using Biometrics: Data, Models, and Metrics , 2011 .

[37]  Henry P. Wynn,et al.  Maximum entropy sampling , 1987 .

[38]  Dalia El Badawy,et al.  Near-optimal sensor placement for signals lying in a union of subspaces , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[39]  Andreas Krause,et al.  Lazier Than Lazy Greedy , 2014, AAAI.

[40]  Alejandro Ribeiro,et al.  Near-optimality of greedy set selection in the sampling of graph signals , 2016, 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[41]  Hui Lin,et al.  On fast approximate submodular minimization , 2011, NIPS.

[42]  Rishabh K. Iyer,et al.  Algorithms for Approximate Minimization of the Difference Between Submodular Functions, with Applications , 2012, UAI.

[43]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[44]  Francis R. Bach,et al.  Learning with Submodular Functions: A Convex Optimization Perspective , 2011, Found. Trends Mach. Learn..

[45]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[46]  Marc Moonen,et al.  Efficient sensor subset selection and link failure response for linear MMSE signal estimation in wireless sensor networks , 2010, 2010 18th European Signal Processing Conference.

[47]  Gregory W. Wornell,et al.  Sensor Array Design Through Submodular Optimization , 2017, IEEE Transactions on Information Theory.

[48]  Martin Vetterli,et al.  Near-Optimal Sensor Placement for Linear Inverse Problems , 2013, IEEE Transactions on Signal Processing.

[49]  Ramesh Govindan,et al.  Utility based sensor selection , 2006, IPSN.

[50]  N. Sloane,et al.  Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. I , 1993 .

[51]  Geert Leus,et al.  Sparsity-Aware Sensor Selection: Centralized and Distributed Algorithms , 2014, IEEE Signal Processing Letters.

[52]  Christopher John Young,et al.  A comparison of select trigger algorithms for automated global seismic phase and event detection , 1998, Bulletin of the Seismological Society of America.

[53]  Elwyn R. Berlekamp,et al.  Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. II , 1967, Inf. Control..

[54]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[55]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[56]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .