Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations

This paper studies the point location problem in Delaunay triangulations without preprocessing and additional storage. The proposed procedure finds the query point by simply “walking through” the triangulation, after selecting a “good starting point” by random sampling. The analysis generalizes and extends a recent result for dD 2 dimensions by proving this procedure takes expected time close to O.n 1=.dC1/ / for point location in Delaunay triangulations of n random points indD 3 dimensions. Empirical results in both two and three dimensions show that this procedure is efficient in practice. © 1999 Elsevier Science B.V. All rights reserved.

[1]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1989, SCG '89.

[2]  Luc Devroye,et al.  A Note on Point Location in Delaunay Triangulations of Random Points , 1998, Algorithmica.

[3]  H. Borouchaki,et al.  Fast Delaunay triangulation in three dimensions , 1995 .

[4]  M. Iri,et al.  Practical use of Bucketing Techniques in Computational Geometry , 1985 .

[5]  Herbert Edelsbrunner,et al.  An acyclicity theorem for cell complexes ind dimension , 1990, Comb..

[7]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[8]  Herbert Edelsbrunner,et al.  An acyclicity theorem for cell complexes in d dimensions , 1989, SCG '89.

[9]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[10]  M. Garland,et al.  Fast Polygonal Approximation of Terrains and Height Fields , 1998 .

[11]  Olivier Devillers Improved incremental randomized Delaunay triangulation , 1998, SCG '98.

[12]  Richard J. Lipton,et al.  Multidimensional Searching Problems , 1976, SIAM J. Comput..

[13]  David Eppstein,et al.  The expected extremes in a Delaunay triangulation , 1991, Int. J. Comput. Geom. Appl..

[14]  J. Bonet,et al.  An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems , 1991 .

[15]  P. J. Plauger Primitives for , 1992 .

[16]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[17]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[18]  P. George,et al.  Delaunay's mesh of a convex polyhedron in dimension d. application to arbitrary polyhedra , 1992 .

[19]  Erik Brisson,et al.  Representing geometric structures ind dimensions: Topology and order , 1993, Discret. Comput. Geom..

[20]  David P. Dobkin,et al.  Primitives for the manipulation of three-dimensional subdivisions , 1987, SCG '87.

[21]  Michael T. Goodrich,et al.  Methods for achieving fast query times in point location data structures , 1997, SODA '97.

[22]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[23]  Boris Aronov,et al.  Average-case ray shooting and minimum weight triangulations , 1997, SCG '97.

[24]  E. Mucke Shapes and implementations in three-dimensional geometry , 1993 .

[25]  D. George,et al.  The X3D grid generation system , 1996 .

[26]  Prosenjit Bose,et al.  Intersections with random geometric objects , 1998, Comput. Geom..

[27]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[28]  Erik Brisson,et al.  Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.