Interaction between Saccharomyces cerevisiae and Lactobacillus fermentum during co-culture fermentation

[1]  S. R. Ceccato-Antonini,et al.  High doses of potassium metabisulphite are required to control the growth of native bacteria and yeasts from sugarcane juice , 2019, Acta Scientiarum. Technology.

[2]  T. Leathers,et al.  Inhibition of Lactobacillus biofilm growth in fuel ethanol fermentations by Bacillus. , 2019, Bioresource technology.

[3]  R. S. Leite,et al.  Biochemical characterization and evaluation of invertases produced from Saccharomyces cerevisiae CAT-1 and Rhodotorula mucilaginosa for the production of fructooligosaccharides , 2018, Preparative biochemistry & biotechnology.

[4]  S. R. Ceccato-Antonini,et al.  Interaction of Saccharomyces cerevisiae–Lactobacillus fermentum–Dekkera bruxellensis and feedstock on fuel ethanol fermentation , 2018, Antonie van Leeuwenhoek.

[5]  R. G. Bastos,et al.  Effects of feedstock and co-culture of Lactobacillus fermentum and wild Saccharomyces cerevisiae strain during fuel ethanol fermentation by the industrial yeast strain PE-2 , 2018, AMB Express.

[6]  S. R. Ceccato-Antonini,et al.  Ethanol addition enhances acid treatment to eliminate Lactobacillus fermentum from the fermentation process for fuel ethanol production , 2018, Letters in applied microbiology.

[7]  A. Sant’Ana,et al.  Impact and significance of microbial contamination during fermentation for bioethanol production , 2017 .

[8]  Savitri,et al.  Invertase of Saccharomyces cerevisiae SAA-612: Production, characterization and application in synthesis of fructo-oligosaccharides , 2017 .

[9]  Z. Vujčić,et al.  Comparative study of stability of soluble and cell wall invertase from Saccharomyces cerevisiae , 2017, Preparative biochemistry & biotechnology.

[10]  Henrique Vianna de Amorim,et al.  Ethanol production in Brazil: a bridge between science and industry , 2016, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[11]  F. Morsy,et al.  Concomitant hydrolysis of sucrose by the long half-life time yeast invertase and hydrogen production by the hydrogen over-producing Escherichia coli HD701 , 2016 .

[12]  Yanhong Zhang,et al.  Fate of virginiamycin through the fuel ethanol production process , 2016, World journal of microbiology & biotechnology.

[13]  L. A. Calderón,et al.  Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production , 2015, Microbial Cell Factories.

[14]  V. Passoth,et al.  Interaction of Lactobacillus vini with the ethanol-producing yeasts Dekkera bruxellensis and Saccharomyces cerevisiae , 2014, Biotechnology and applied biochemistry.

[15]  M. L. Lopes,et al.  Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation , 2013, Antonie van Leeuwenhoek.

[16]  S. R. Ceccato-Antonini,et al.  Fermentative and growth performances of Dekkera bruxellensis in different batch systems and the effect of initial low cell counts in co‐cultures with Saccharomyces cerevisiae , 2013, Yeast.

[17]  A. K. Gombert,et al.  What do we know about the yeast strains from the Brazilian fuel ethanol industry? , 2012, Applied Microbiology and Biotechnology.

[18]  P. Silva,et al.  The consequences of Lactobacillus vini and Dekkera bruxellensis as contaminants of the sugarcane-based ethanol fermentation , 2012, Journal of Industrial Microbiology & Biotechnology.

[19]  M. Rashad,et al.  Production , Purification and Characterization of Extracellular Invertase from Saccharomyses Cerevisiae NRRL Y-12632 by Solid-State Fermentation of Red Carrot Residue , 2012 .

[20]  J. Pronk,et al.  Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. , 2011, Metabolic engineering.

[21]  Marcos S. Buckeridge,et al.  Scientific challenges of bioethanol production in Brazil , 2011, Applied Microbiology and Biotechnology.

[22]  Alya Limayem,et al.  Antimicrobial strategies for limiting bacterial contaminants in fuel bioethanol fermentations , 2011 .

[23]  Vasco Azevedo,et al.  Diversity of lactic acid bacteria of the bioethanol process , 2010, BMC Microbiology.

[24]  M. L. Lopes,et al.  Yeast selection for fuel ethanol production in Brazil. , 2008, FEMS yeast research.

[25]  L. H. Gomes,et al.  Obtaining and selection of hexokinases-less strains of Saccharomyces cerevisiae for production of ethanol and fructose from sucrose , 2008, Applied Microbiology and Biotechnology.

[26]  T. Leathers,et al.  Antimicrobial susceptibility of Lactobacillus species isolated from commercial ethanol plants , 2007, Journal of Industrial Microbiology & Biotechnology.

[27]  Ashok Pandey,et al.  Metabolic engineering approaches for lactic acid production , 2006 .

[28]  Sikander Ali INVERTASE PRODUCTION FROM A HYPERPRODUCING SACCHAROMYCES CEREVISIAE STRAIN ISOLATED FROM DATES , 2005 .

[29]  N. Narendranath,et al.  Effect of yeast inoculation rate on the metabolism of contaminating lactobacilli during fermentation of corn mash , 2004, Journal of Industrial Microbiology and Biotechnology.

[30]  W. M. Ingledew,et al.  Changes in steady state on introduction of a Lactobacillus contaminant to a continuous culture ethanol fermentation , 2001, Journal of Industrial Microbiology and Biotechnology.

[31]  W. M. Ingledew,et al.  Effect of lactobacilli on yeast growth, viability and batch and semi‐continuous alcoholic fermentation of corn mash , 2001, Journal of applied microbiology.

[32]  J. François,et al.  A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. , 1997, Analytical biochemistry.

[33]  A. Angelov,et al.  Biosynthesis of invertase by Saccharomyces cerevisiae with sugarcane molasses as substrate , 1993, World journal of microbiology & biotechnology.

[34]  M. Vitolo,et al.  Effect of viscosity on sucrose hydrolysis catalyzed by invertase obtained from S. Cerevisiae. , 1984, Biotechnology and bioengineering.

[35]  M. Vitolo,et al.  Measurement of invertase activity of cells of Saccharomyces cerevisiae. , 1983, Analytical biochemistry.

[36]  C. B. Mclaughlin Readily Prepared Medium for Cultivation of Lactobacilli , 1946, Journal of bacteriology.

[37]  W. Gray The Sugar Tolerance of Four Strains of Distillers' Yeast , 1945, Journal of bacteriology.

[38]  Norton Nelson,et al.  A PHOTOMETRIC ADAPTATION OF THE SOMOGYI METHOD FOR THE DETERMINATION OF GLUCOSE , 1944 .