Spectral dynamics of 405 nm (Al,In)GaN laser diodes grown on GaN and SiC substrate.

We investigate the spectral properties of violet 405 nm (Al,In)GaN laser diodes (LDs). Depending on the substrate the LDs are grown on, the lasing spectra show significant differences. LDs grown on low dislocation GaN substrate have a broad spectrum with several longitudinal modes, while LDs grown on SiC substrate are lasing on a single longitudinal mode.With increasing current, the laser emission of LDs grown on SiC substrate jumps from one longitudinal mode to another (mode hopping), whereas GaN substrate LDs show a smooth but asymmetric mode comb. The different envelopes of these spectra can be understood by assuming a variation of the gain for each individual longitudinal mode. With a high spectral resolution setup, we measure the gain of each longitudinal mode, employing the Hakki-Paoli method. Measurements show a slightly fluctuating gain for the modes of GaN substrate LDs, but much larger fluctuations for LDs on SiC substrate. We carry out simulations of the longitudinal mode spectrum of (Al,In)GaN laser diodes using a rate equation model with nonlinear gain (self saturation, symmetric and asymmetric cross saturation) and including gain fluctuations. With a set of parameters which is largely identical for LDs on either substrate, the simulated spectra truly resemble those typical for LDs on GaN or SiC substrate.

[1]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[2]  B. W. Hakki,et al.  cw degradation at 300°K of GaAs double-heterostructure junction lasers. II. Electronic gain , 1973 .

[3]  B. Hakki,et al.  Gain spectra in GaAs double−heterostructure injection lasers , 1975 .

[4]  Minoru Yamada,et al.  Analysis of gain suppression in undoped injection lasers , 1981 .

[5]  Minoru Yamada,et al.  Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers , 1989 .

[6]  F. Peters,et al.  Strain and scattering related spectral output of 1.3microm InGaAsP semiconductor diode lasers. , 1991, Applied optics.

[7]  Brian Corbett,et al.  Single longitudinal mode ridge waveguide 1.3 /spl mu/m Fabry-Perot laser by modal perturbation , 1995 .

[8]  Compositional Inhomogeneity of InGaN Grown on Sapphire and Bulk GaN Substrates by Metalorganic Chemical Vapor Deposition , 1998 .

[9]  I. Moerman,et al.  Indium segregation in InGaN quantum-well structures. , 2000 .

[10]  Moustafa Ahmed,et al.  A MULTIMODE SIMULATION MODEL OF MODE-COMPETITION LOW-FREQUENCY NOISE IN SEMICONDUCTOR LASERS , 2001 .

[11]  Minoru Yamada,et al.  Numerical modeling of intensity and phase noise in semiconductor lasers , 2001 .

[12]  M. Yamada,et al.  Influence of instantaneous mode competition on the dynamics of semiconductor lasers , 2002 .

[13]  Werner Wegscheider,et al.  Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers , 2003 .

[14]  A. Weimar,et al.  Time resolved study of laser diode characteristics during pulsed operation , 2003 .

[15]  Werner Wegscheider,et al.  Nitride-based in-plane laser diodes with vertical currrent path , 2004, SPIE OPTO.

[16]  P. Hinze,et al.  Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency. , 2005, Physical review letters.

[17]  G. Andrew D. Briggs,et al.  Growth modes in heteroepitaxy of InGaN on GaN , 2005 .

[18]  A. Weimar,et al.  Observation of temperature-independent longitudinal-mode patterns in violet-blue InGaN-based laser diodes , 2005, IEEE Photonics Technology Letters.

[19]  A. Floch,et al.  Spectral and spatial dynamics in InGaN blue-violet lasers , 2006 .

[20]  Werner Wegscheider,et al.  Microscopic analysis of optical gain in InGaN/GaN quantum wells , 2006 .

[21]  Mathieu Luisier,et al.  Simulation and design of optical gain in In(Al)GaN/GaN short wavelength lasers , 2006, SPIE Photonics Europe.

[22]  E. O’Reilly,et al.  Spectral manipulation in Fabry-Perot lasers: perturbative inverse scattering approach , 2006 .

[23]  Takashi Mukai,et al.  Stimulated emission at 474nm from an InGaN laser diode structure grown on a (112¯2) GaN substrate , 2007 .

[24]  C. Humphreys,et al.  Role of gross well-width fluctuations in bright, green-emitting single InGaN∕GaN quantum well structures , 2007 .

[25]  Hisashi Yamada,et al.  Continuous-wave Operation of AlGaN-cladding-free Nonpolar m-Plane InGaN/GaN Laser Diodes , 2007 .

[26]  T. Mukai,et al.  Optical gain spectra for near UV to aquamarine (Al,In)GaN laser diodes. , 2007, Optics express.

[27]  Heiko Bremers,et al.  Emission and recombination characteristics of Ga 1-x In x N/GaN quantum well structures with nonradiative recombination suppression by V-shaped pits , 2007 .

[28]  Takashi Mukai,et al.  Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375nm to 470 nm spectral range , 2007, SPIE OPTO.

[29]  B. Corbett,et al.  Transition From Perturbed to Coupled-Cavity Behavior With Asymmetric Spectral Emission in Ridge Lasers Emitting at 1.55 $\mu$m , 2007, IEEE Photonics Technology Letters.

[30]  A. Lell,et al.  Substrate Modes of (Al,In)GaN Semiconductor Laser Diodes on SiC and GaN Substrates , 2007, IEEE Journal of Quantum Electronics.

[31]  K. Katayama,et al.  Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates , 2007 .

[32]  A. Avramescu,et al.  True-blue InGaN laser for pico size projectors , 2008, SPIE OPTO.

[33]  H. Kuo,et al.  CW lasing of current injection blue GaN-based vertical cavity surface emitting laser , 2008 .

[34]  Stewart Edward Hooper,et al.  Degradation of InGaN∕GaN laser diodes analyzed by microphotoluminescence and microelectroluminescence mappings , 2008 .

[35]  Tobias Meyer,et al.  Lateral and longitudinal mode pattern of broad ridge 405nm (Al, In)GaN laser diodes , 2008 .

[36]  Takashi Mukai,et al.  Recent status of white LEDs and nitride LDs , 2008, SPIE OPTO.