On the matrix powers and exponential by the r-generalized Fibonacci sequences methods: the companion matrix case

[1]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[2]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[3]  N. Young Linear fractional transforms of companion matrices , 1979 .

[4]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[5]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[6]  J. Eller On functions of companion matrices , 1987 .

[7]  G. Philippou On the K-TH Order Linear Recurrence and Some Probability Applications , 1988 .

[8]  Andreas N. Philippou,et al.  Applications of Fibonacci Numbers , 2012 .

[9]  Richard A. Brualdi,et al.  Combinatorial matrix theory , 1991 .

[10]  Luis Verde-Star,et al.  Operator Identities and the Solution of Linear Matrix Difference and Differential Equations , 1994 .

[11]  M. Rachidi,et al.  Suites de Fibonacci généralisées et Chaínes de Markov , 1995 .

[12]  I. E. Leonard The Matrix Exponential , 1996, SIAM Rev..

[13]  James D. Louck,et al.  The combinatorial power of the companion matrix , 1996 .

[14]  Stephen S.-T. Yau,et al.  More explicit formulas for the matrix exponential , 1997 .

[15]  EDUARDO LIZ Classroom Note: A Note on the Matrix Exponential , 1998, SIAM Rev..

[16]  M. Rachidi,et al.  Linear recurrence relations in the algebra of matrices and applications , 2001 .

[17]  R. Ben Taher,et al.  Some explicit formulas for the polynomial decomposition of the matrix exponential and applications , 2002 .