Unique end of potential line

Abstract The complexity class CLS was proposed by Daskalakis and Papadimitriou in 2011 to understand the complexity of important NP search problems that admit both path following and potential optimizing algorithms. Here we identify a subclass of CLS – called UniqueEOPL – that applies a more specific combinatorial principle that guarantees unique solutions. We show that UniqueEOPL contains several important problems such as the P-matrix Linear Complementarity Problem, finding fixed points of Contraction Maps, and solving Unique Sink Orientations (USOs). We identify a problem – closely related to solving contraction maps and USOs – that is complete for UniqueEOPL.

[1]  Antonis Thomas Exponential Lower Bounds for History-Based Simplex Pivot Rules on Abstract Cubes , 2017, ESA.

[2]  John Fearnley,et al.  CLS: New Problems and Completeness , 2017, ArXiv.

[3]  Gregory E. Coxson,et al.  The P-matrix problem is co-NP-complete , 1994, Math. Program..

[4]  Wolfgang Mulzer,et al.  The Rainbow at the End of the Line - A PPAD Formulation of the Colorful Carathéodory Theorem with Applications , 2017, SODA.

[5]  Bernd Gärtner The Random-Facet simplex algorithm on combinatorial cubes , 2002, Random Struct. Algorithms.

[6]  Sanjam Garg,et al.  Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium , 2016, CRYPTO.

[7]  K. Sikorski,et al.  A note on two fixed point problems , 2007, J. Complex..

[8]  John Fearnley,et al.  Unique End of Potential Line , 2018, ICALP.

[9]  Paul W. Goldberg,et al.  The Complexity of Computing a Nash Equilibrium , 2009, SIAM J. Comput..

[10]  John Fearnley,et al.  The complexity of all-switches strategy improvement , 2016, SODA 2016.

[11]  Jirí Matousek,et al.  Random edge can be exponential on abstract cubes , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[12]  Eylon Yogev,et al.  Hardness of Continuous Local Search: Query Complexity and Cryptographic Lower Bounds , 2017, SODA.

[13]  Xiaotie Deng,et al.  Matching algorithmic bounds for finding a Brouwer fixed point , 2008, JACM.

[14]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[15]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[16]  Xiaotie Deng,et al.  Discrete Fixed Points: Models, Complexities, and Applications , 2011, Math. Oper. Res..

[17]  Christos H. Papadimitriou,et al.  Continuous local search , 2011, SODA '11.

[18]  Gil Kalai,et al.  Three Puzzles on Mathematics, Computation, and Games , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).

[19]  K. Sikorski,et al.  Computational complexity of fixed points , 2009 .

[20]  Layne T. Watson,et al.  Digraph Models of Bard-Type Algorithms for the Linear Complementarity Problem , 1978, Math. Oper. Res..

[21]  Tibor Szabó,et al.  Finding the Sink Takes Some Time: An Almost Quadratic Lower Bound for Finding the Sink of Unique Sink Oriented Cubes , 2004, Discret. Comput. Geom..

[22]  Nimrod Megiddo,et al.  An interior point potential reduction algorithm for the linear complementarity problem , 1992, Math. Program..

[23]  Rahul Savani,et al.  Computing stable outcomes in symmetric additively-separable hedonic games , 2015, Math. Oper. Res..

[24]  Xiaotie Deng,et al.  Settling the complexity of computing two-player Nash equilibria , 2007, JACM.

[25]  S. J. Chung NP-Completeness of the linear complementarity problem , 1989 .

[26]  Xi Chen,et al.  On algorithms for discrete and approximate brouwer fixed points , 2005, STOC '05.

[27]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[28]  Christopher A. Sikorski,et al.  A recursive algorithm for the infinity-norm fixed point problem , 2003, J. Complex..

[29]  Tibor Szabó,et al.  Jumping Doesn't Help in Abstract Cubes , 2005, IPCO.

[30]  Emil Jerábek Integer factoring and modular square roots , 2016, J. Comput. Syst. Sci..

[31]  Walter D. Morris Randomized pivot algorithms for P-matrix linear complementarity problems , 2002, Math. Program..

[32]  Christopher A. Sikorski Optimal solution of nonlinear equations , 1985, J. Complex..

[33]  Kathy Williamson Hoke,et al.  Completely unimodal numberings of a simple polytope , 1988, Discret. Appl. Math..

[34]  Uri Zwick,et al.  The Complexity of Mean Payoff Games on Graphs , 1996, Theor. Comput. Sci..

[35]  Christos H. Papadimitriou,et al.  The complexity of pure Nash equilibria , 2004, STOC '04.

[36]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[37]  Manuel Kohler,et al.  ARRIVAL: A Zero-Player Graph Game in NP ∩ coNP , 2017 .

[38]  Kousha Etessami,et al.  On the Complexity of Nash Equilibria and Other Fixed Points , 2010, SIAM J. Comput..

[39]  Thomas Dueholm Hansen,et al.  The complexity of interior point methods for solving discounted turn-based stochastic games , 2013, CiE.

[40]  Leonid Khachiyan,et al.  Approximating Fixed Points of Weakly Contracting Mappings , 1999, J. Complex..

[41]  Mihalis Yannakakis,et al.  Simple Local Search Problems That are Hard to Solve , 1991, SIAM J. Comput..

[42]  Uri Zwick,et al.  A subexponential lower bound for the random facet algorithm for parity games , 2011, SODA '11.

[43]  K. G. Murty Computational complexity of complementary pivot methods , 1978 .

[44]  Bernd Gärtner,et al.  The Complexity of Recognizing Unique Sink Orientations , 2015, STACS.

[45]  Christos H. Papadimitriou,et al.  On Total Functions, Existence Theorems and Computational Complexity , 1991, Theor. Comput. Sci..

[46]  Aviad Rubinstein,et al.  Settling the Complexity of Computing Approximate Two-Player Nash Equilibria , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[47]  Uri Zwick,et al.  Improved upper bounds for Random-Edge and Random-Jump on abstract cubes , 2014, SODA.

[48]  S. Banach Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .

[49]  Mihalis Yannakakis,et al.  How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[50]  Tibor Szabó,et al.  Unique sink orientations of cubes , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[51]  Christos H. Papadimitriou,et al.  Exponential lower bounds for finding Brouwer fixed points , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[52]  Karel Král,et al.  ARRIVAL: Next Stop in CLS , 2018, ICALP.

[53]  Nir Bitansky,et al.  On the Cryptographic Hardness of Finding a Nash Equilibrium , 2015, FOCS.

[54]  Xiaotie Deng,et al.  On the complexity of 2D discrete fixed point problem , 2009, Theor. Comput. Sci..

[55]  Bernd Gärtner,et al.  Linear programming and unique sink orientations , 2006, SODA '06.

[56]  Christos Tzamos,et al.  A converse to Banach's fixed point theorem and its CLS-completeness , 2017, STOC.

[57]  Ruta Mehta,et al.  Constant rank bimatrix games are PPAD-hard , 2014, STOC.