A study on structural analysis and magnetic behaviour of barium hexaferrite nanomaterial

[1]  S. Kumari,et al.  Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature , 2021 .

[2]  S. Kumari,et al.  Crystal structure and magnetic properties study on barium hexaferrite of different average crystallite size , 2021, Applied Physics A.

[3]  S. Kumari,et al.  Lattice strain caused magnetism and magnetocrystalline anisotropy in Zn modified barium hexaferrite , 2020 .

[4]  R. Awad,et al.  Effect of calcination temperature and cobalt addition on structural, optical and magnetic properties of barium hexaferrite BaFe12O19 nanoparticles , 2020, Applied Physics A.

[5]  L. Matzui,et al.  Functional Magnetic Composites Based on Hexaferrites: Correlation of the Composition, Magnetic and High-Frequency Properties , 2019, Nanomaterials.

[6]  T. Panikorovskii,et al.  Dynamic Disorder of Fe3+ Ions in the Crystal Structure of Natural Barioferrite , 2018, Minerals.

[7]  N. Perov,et al.  Magnetic and Structural Properties of Barium Hexaferrite BaFe12O19 from Various Growth Techniques , 2017, Materials.

[8]  M. Jafarian,et al.  Improvement of the performance of microwave X band absorbers based on pure and doped Ba-hexaferrite , 2017 .

[9]  Dalveer Kaur,et al.  Tunable microwave absorption in CoAl substituted M-type BaSr hexagonal ferrite , 2016 .

[10]  Y. E. Gunanto,et al.  Composition and phase analysis of nanocrystalline BaxSr1-xFe12O19 (x = 1.0; 0.6; and 0.4) by using general structure analysis system , 2016 .

[11]  S. Mahmood,et al.  Synthesis and structural characterization of nonstoichiometric barium hexaferrite materials with Fe:Ba ratio of 11.5 – 16.16 , 2015 .

[12]  T. Kalaivani,et al.  Sintering temperature dependence of optimized microstructure formation of BaFe12O19 using sol–gel method , 2015, Journal of Materials Science: Materials in Electronics.

[13]  L. S. Mashkovtseva,et al.  Growth, structural and magnetic characterization of Co- and Ni-substituted barium hexaferrite single crystals , 2014 .

[14]  H. C. Gupta,et al.  Enhancement of Curie temperature of barium hexaferrite by dense electronic excitations , 2014 .

[15]  B. Mondal,et al.  Acetone and ethanol sensing of barium hexaferrite particles: A case study considering the possibilities of non-conventional hexaferrite sensor , 2014 .

[16]  G. Tan,et al.  Structure and multiferroic properties of barium hexaferrite ceramics , 2013 .

[17]  E. Xie,et al.  BaFe12O19 single-particle-chain nanofibers: preparation, characterization, formation principle, and magnetization reversal mechanism. , 2012, ACS nano.

[18]  A. Singh,et al.  Characterization of γ- and α-Fe 2 O 3 nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of α-Fe 2 O 3 , 2011 .

[19]  Q. Mohsen Barium hexaferrite synthesis by oxalate precursor route , 2010 .

[20]  Jianguo Guan,et al.  In situ generated dense shell-engaged Ostwald ripening: A facile controlled-preparation for BaFe12O19 hierarchical hollow fiber arrays , 2010 .

[21]  S. Basu,et al.  Shape- and field-dependent Morin transitions in structured α-Fe2O3 , 2009 .

[22]  M. Hervieu,et al.  Modular construction of oxide structures--compositional control of transition metal coordination environments. , 2008, Journal of the American Chemical Society.

[23]  M. Drofenik,et al.  Hydrothermal Synthesis of Ba‐Hexaferrite Nanoparticles , 2007 .

[24]  R. Green,et al.  Dielectric properties of M-type barium hexaferrite prepared by co-precipitation , 2007 .

[25]  P. Winotai,et al.  PROPERTIES OF CR-SUBSTITUTED M-TYPE BARIUM FERRITES PREPARED BY NITRATE-CITRATE GEL-AUTOCOMBUSTION PROCESS , 2006 .

[26]  J. Anglada‐Rivera,et al.  Magnetic and microstructural properties of the Ti4+-doped Barium hexaferrite , 2004 .

[27]  L. F. Martynova,et al.  Hydrothermal synthesis of barium hexaferrite , 2001 .

[28]  A. Perrotta,et al.  The crystal structure and refinement of ferrimagnetic barium ferrite, BaFe12O19 , 1967 .