On embedding cycles into faulty twisted cubes

The twisted cube TQ"n is an alternative to the popular hypercube network. Recently, some interesting properties of TQ"n were investigated. In this paper, we study the pancycle problem on faulty twisted cubes. Let f"e and f"v be the numbers of faulty edges and faulty vertices in TQ"n, respectively. We show that, with f"e+f"v==3.

[1]  Gen-Huey Chen,et al.  Hypercomplete : A pancyclic recursive topology for large-scale distributed multicomputer systems , 2000 .

[2]  Yukio Shibata,et al.  Erratum to "Pancyclicity of recursive circulant graphs": [Information Processing Letters 81 (2002) 187-190] , 2002, Inf. Process. Lett..

[3]  Lih-Hsing Hsu,et al.  Topological Properties of Twisted Cube , 1999, Inf. Sci..

[4]  Mekkia Kouider,et al.  On pancyclism in hamiltonian graphs , 2002, Discret. Math..

[5]  Jianxi Fan Hamilton-connectivity and cycle-embedding of the Möbius cubes , 2002, Inf. Process. Lett..

[6]  Yukio Shibata,et al.  Pancyclicity of recursive circulant graphs , 2002, Inf. Process. Lett..

[7]  Biing-Feng Wang,et al.  Constructing Edge-Disjoint Spanning Trees in Product Networks , 2003, IEEE Trans. Parallel Distributed Syst..

[8]  Arkady Kanevsky,et al.  On the Embedding of Cycles in Pancake Graphs , 1995, Parallel Comput..

[9]  Bella Bose,et al.  Fault-Tolerant Ring Embedding in de Bruijn Networks , 1993, IEEE Trans. Computers.

[10]  Lutz Volkmann,et al.  Vertex pancyclic graphs , 2002, Discret. Appl. Math..

[11]  Dharma P. Agrawal,et al.  Generalized Hypercube and Hyperbus Structures for a Computer Network , 1984, IEEE Transactions on Computers.

[12]  Peter A. J. Hilbers,et al.  The Twisted Cube , 1987, PARLE.

[13]  P. Cull,et al.  The Mobius Cubes , 1991, The Sixth Distributed Memory Computing Conference, 1991. Proceedings.

[14]  Kemal Efe,et al.  The Crossed Cube Architecture for Parallel Computation , 1992, IEEE Trans. Parallel Distributed Syst..

[15]  Gen-Huey Chen,et al.  Cycles in butterfly graphs , 2000, Networks.

[16]  Jimmy J. M. Tan,et al.  Fault-Tolerant Hamiltonicity of Twisted Cubes , 2002, J. Parallel Distributed Comput..

[17]  Abhijit Sengupta On Ring Embedding in Hypercubes with Faulty Nodes and Links , 1998, Inf. Process. Lett..

[18]  Jan van den Heuvel,et al.  Pancyclicity of hamiltonian line graphs , 1995, Discret. Math..

[19]  Chun-Hua Chen,et al.  Pancyclicity on Möbius cubes with maximal edge faults , 2004, Parallel Comput..

[20]  Ding-Zhu Du,et al.  Generalized de Bruijn digraphs , 1988, Networks.

[21]  E. Todeva Networks , 2007 .

[22]  Richard C. T. Lee,et al.  An Optimal Embedding of Cycles into Incomplete Hypercubes , 1999, Inf. Process. Lett..

[23]  Krishnan Padmanabhan,et al.  the Twisted Cube Topology for Multiprocessors: A Study in Network Asymmetry , 1991, J. Parallel Distributed Comput..

[24]  Jimmy J. M. Tan,et al.  Fault-tolerant cycle-embedding of crossed cubes , 2003, Inf. Process. Lett..

[25]  Saïd Bettayeb,et al.  Embedding Binary Trees into Crossed Cubes , 1995, IEEE Trans. Computers.

[26]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[27]  Anne Germa,et al.  Cycles in the cube-connected cycles graph , 1998, Discret. Appl. Math..

[28]  Gen-Huey Chen,et al.  Embed longest rings onto star graphs with vertex faults , 1998, Proceedings. 1998 International Conference on Parallel Processing (Cat. No.98EX205).

[29]  Gen-Huey Chen,et al.  Fault-Free Hamiltonian Cycles in Faulty Arrangement Graphs , 1999, IEEE Trans. Parallel Distributed Syst..

[30]  S. Abraham Twisted cube : A study in asymmetry , 1991 .